286 research outputs found

    Growth of vertically aligned arrays of carbon nanotubes for high field emission

    No full text
    International audienceVertically aligned multi-walled carbon nanotubes have been grown on Ni-coated silicon substrates, by using either direct current diode or triode plasma-enhanced chemical vapor deposition at low temperature (around 620 °C). Acetylene gas has been used as the carbon source while ammonia and hydrogen have been used for etching. However densely packed (∼ 109 cm− 2) CNTs were obtained when the pressure was ∼ 100 Pa. The alignment of nanotubes is a necessary, but not a sufficient condition in order to get an efficient electron emission: the growth of nanotubes should be controlled along regular arrays, in order to minimize the electrostatic interactions between them. So a three dimensional numerical simulation has been developed to calculate the local electric field in the vicinity of the tips for a finite square array of nanotubes and thus to calculate the maximum of the electron emission current density as a function of the spacing between nanotubes. Finally the triode plasma- enhanced process combined with pre-patterned catalyst films (using different lithography techniques) has been chosen in order to grow regular arrays of aligned CNTs with different pitches in the micrometer range. The comparison between the experimental and the simulation data permits to define the most efficient CNT-based electron field emitter

    Evaluating Molecular Mechanical Potentials for Helical Peptides and Proteins

    Get PDF
    Multiple variants of the AMBER all-atom force field were quantitatively evaluated with respect to their ability to accurately characterize helix-coil equilibria in explicit solvent simulations. Using a global distributed computing network, absolute conformational convergence was achieved for large ensembles of the capped A21 and Fs helical peptides. Further assessment of these AMBER variants was conducted via simulations of a flexible 164-residue five-helix-bundle protein, apolipophorin-III, on the 100 ns timescale. Of the contemporary potentials that had not been assessed previously, the AMBER-99SB force field showed significant helix-destabilizing tendencies, with beta bridge formation occurring in helical peptides, and unfolding of apolipophorin-III occurring on the tens of nanoseconds timescale. The AMBER-03 force field, while showing adequate helical propensities for both peptides and stabilizing apolipophorin-III, (i) predicts an unexpected decrease in helicity with ALA→ARG+ substitution, (ii) lacks experimentally observed 310 helical content, and (iii) deviates strongly from average apolipophorin-III NMR structural properties. As is observed for AMBER-99SB, AMBER-03 significantly overweighs the contribution of extended and polyproline backbone configurations to the conformational equilibrium. In contrast, the AMBER-99φ force field, which was previously shown to best reproduce experimental measurements of the helix-coil transition in model helical peptides, adequately stabilizes apolipophorin-III and yields both an average gyration radius and polar solvent exposed surface area that are in excellent agreement with the NMR ensemble

    N=2 supergravity in five dimensions revisited

    Get PDF
    We construct matter-coupled N=2 supergravity in five dimensions, using the superconformal approach. For the matter sector we take an arbitrary number of vector-, tensor- and hyper-multiplets. By allowing off-diagonal vector-tensor couplings we find more general results than currently known in the literature. Our results provide the appropriate starting point for a systematic search for BPS solutions, and for applications of M-theory compactifications on Calabi-Yau manifolds with fluxes.Comment: 35 pages; v.2: A sign changed in a bilinear fermion term in (5.7

    Magnetic Nested-wind Scenarios for Bipolar Outflows: Pre-planetary and YSO nebular shaping

    Get PDF
    We present results of a series of magnetohydrodynamic (MHD) and hydro- dynamic (HD) 2.5D simulations of the morphology of outflows driven by nested wide-angle winds - i.e. winds which eminate from a central star as well as from an orbiting accretion disk. While our results are broadly relevent to nested wind systems we have tuned the parameters of the simulations to touch on issues in both Young Stellar Objects and Planetary Nebula studies. In particular our studies connect to open issues in the early evolution of Planetary Nebulae. We find that nested MHD winds exhibit marked morphological differences from the single MHD wind case along both dimensions of the flow. Nested HD winds on the other hand give rise mainly to geometric distortions of an outflow that is topologically similar to the flow arising from a single stellar HD wind. Our MHD results are insensitive to changes in ambient temperature between ionized and un-ionized circumstellar environments. The results are sensitive to the relative mass-loss rates, and to the relative speeds of the stellar and disk winds. We also present synthetic emission maps of both nested MHD and HD simulations. We find that nested MHD winds show knots of emission appearing on-axis that do not appear in the HD case.Comment: 28 pages, 8 figure

    Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research

    Get PDF
    Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1-the summer 2015 and winter 2016 growing seasons-of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project's goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and most comprehensive project of its kind to date, these lessons are particularly salient to researchers embarking on agricultural research with UAVs

    Superconformal N=2, D=5 matter with and without actions

    Get PDF
    We investigate N=2, D=5 supersymmetry and matter-coupled supergravity theories in a superconformal context. In a first stage we do not require the existence of a Lagrangian. Under this assumption, we already find at the level of rigid supersymmetry, i.e. before coupling to conformal supergravity, more general matter couplings than have been considered in the literature. For instance, we construct new vector-tensor multiplet couplings, theories with an odd number of tensor multiplets, and hypermultiplets whose scalar manifold geometry is not hyperkaehler. Next, we construct rigid superconformal Lagrangians. This requires some extra ingredients that are not available for all dynamical systems. However, for the generalizations with tensor multiplets mentioned above, we find corresponding new actions and scalar potentials. Finally, we extend the supersymmetry to local superconformal symmetry, making use of the Weyl multiplet. Throughout the paper, we will indicate the various geometrical concepts that arise, and as an application we compute the non-vanishing components of the Ricci tensor of hypercomplex group manifolds. Our results can be used as a starting point to obtain more general matter-couplings to Poincare supergravity.Comment: 67 pages; v2: title of reference changed and small editing corrections; v3: small typing errors corrected, version published in JHEP; v4: typos corrected; v5: additional term in (2.109) and (4.11); v6: change of order of indices in (2.89

    Long-term effects of evolocumab in participants with HIV and dyslipidemia: results from the open-label extension period

    Get PDF
    Objectives: People with HIV (PWH) are at an increased risk of atherosclerotic cardiovascular disease. Suboptimal responses to statin therapy in PWH may result from antiretroviral therapies (ARTs). This open-label extension study aimed to evaluate the long-term safety and efficacy of evolocumab up to 52\u200aweeks in PWH. Design: This final analysis of a multinational, placebo-controlled, double-blind, randomized phase 3 trial evaluated the effect of monthly subcutaneous evolocumab 420\u200amg on low-density lipoprotein cholesterol (LDL-C) during the open-label period (OLP) following 24\u200aweeks of double-blind period in PWH with hypercholesterolemia/mixed dyslipidemia. All participants enrolled had elevated LDL-C or nonhigh-density lipoprotein cholesterol (non-HDL-C) and were on stable maximally tolerated statin and stable ART. Methods: Efficacy was assessed by percentage change from baseline in LDL-C, triglycerides, and atherogenic lipoproteins. Treatment-emergent adverse events (TEAEs) were examined. Results: Of the 467 participants randomized in the double-blind period, 451 (96.6%) received at least one dose of evolocumab during the OLP (mean age of 56.4\u200ayears, 82.5% male, mean duration with HIV of 17.4\u200ayears). By the end of the 52-week OLP, the overall mean (SD) percentage change in LDL-C from baseline was -57.8% (22.8%). Evolocumab also reduced triglycerides, atherogenic lipid parameters (non-HDL-C, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, and lipoprotein[a]), and increased HDL-C. TEAEs were similar between placebo and evolocumab during the OLP. Conclusion: Long-term administration of evolocumab lowered LDL-C and non-HDL-C, allowing more PWH to achieve recommended lipid goals with no serious adverse events. Trail registration: NCT02833844. Video abstract: http://links.lww.com/QAD/C441

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    • …
    corecore