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ABSTRACT: We investigate N = 2, D = 5 supersymmetry and matter-coupled supergravity
theories in a superconformal context. In a first stage we do not require the existence of a
lagrangian. Under this assumption, we already find at the level of rigid supersymmetry,
i.e. before coupling to conformal supergravity, more general matter couplings than have
been considered in the literature. For instance, we construct new vector-tensor multiplet
couplings, theories with an odd number of tensor multiplets, and hypermultiplets whose
scalar manifold geometry is mot hyperkahler. Next, we construct rigid superconformal
lagrangians. This requires some extra ingredients that are not available for all dynamical
systems. However, for the generalizations with tensor multiplets mentioned above, we find
corresponding new actions and scalar potentials. Finally, we extend the supersymmetry
to local superconformal symmetry, making use of the Weyl multiplet. Throughout the
paper, we will indicate the various geometrical concepts that arise, and as an application
we compute the non-vanishing components of the Ricci tensor of hypercomplex group
manifolds. Our results can be used as a starting point to obtain more general matter-
couplings to Poincaré supergravity.
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1. Introduction

Recently, much attention has been given to D = 5 matter-coupled supergravity theo-
ries [l, B, thereby generalizing the earlier results of [B, f]l. This is mainly due to the fact
that matter couplings in five dimensions play an important role in theories with large extra
dimensions [f]-[§]. In particular, the properties of the scalar potential determine whether
or not a supersymmetric Randall-Sundrum (RS) scenario [ff, fJ is possible. The possibility
of such a supersymmetric RS scenario relies on the existence of a domain-wall solution con-
taining a warp factor with the correct asymptotic behaviour such that gravity is suppressed
in the transverse direction. It turns out that constructing such a domain-wall solution is
nontrivial.

With only vector multiplets and no singular source insertions, a no-go theorem was
established for smooth domain-wall solutions [fl, [0]. It has been shown that solutions
acceptable for a supersymmetric RS scenario can be found provided one allows for branes
as singular insertions [[L1]. Another approach is to include hypermultiplets [[2]-[[4]. The
general mixing of vector and hypermultiplets was considered in [[§], and its possibilities
were further analysed in [[§]. It seems that with such general matter couplings there is
no a priori obstruction for a supersymmetric RS scenario, although an acceptable smooth
solution has not yet been found. Improvements in the last year involve curved branes [[[7—-
Bd] and the use of non-homogeneous quaternionic spaces [R1].

Matter-coupled D = 5 supergravity theories also play an important role in AdSg/
CFTs [R7) and AdS5/CFTy RJ] correspondences. In particular, the D = 5 domain-wall
solutions describe the renormalization group flow of the corresponding four-dimensional
field theory. The geometrical warp factor now plays the role of an energy scale. The
structure of the domain wall is determined by the properties of the scalar potential. Finally,
domain wall solutions have been applied to cosmology in the context of e.g. inflation [P4] and
quintessence [@] In this context, it is important to find out what the detailed properties
of the scalar potential are, and which kind of domain walls they give rise to.

The reasons given above motivated us to reconsider matter couplings in five dimensions,
to independently derive the most general D = 5 matter couplings of [P] and, perhaps,
to find more general matter couplings. Our strategy was to use the so-called conformal
approach [Pg]-[R9. An advantage of the conformal construction is that, by past experience,
it leads to insights into the structure of the matter couplings. A recent example is the
insight in relations between hyperkahler cones and quaternionic manifolds, based on the
study of superconformal matter couplings with hypermultiplets [B0}, BI].

In B3, B3, the first step in the conformal programme has been performed by con-
structing the Weyl multiplets of N = 2 conformal supergravity in five dimensions. The
purpose of this paper is to take the next step in the conformal programme and introduce
the different D = 5 matter multiplets with 8 conformal supersymmetries together with the
corresponding actions (when they exist). Similar steps, have been performed in [B3]-[B5].
These authors also constructed off-shell superconformal multiplets. We will be able to
generalize their results by not restricting ourselves to off-shell multiplets. Especially for
the hypermultiplets this is important, as general quaternionic manifolds are not obtained



from an off-shell calculus. In this context we should also mention earlier work on (non-
conformal) on-shell multiplets by Zucker [B6, B7. In a next paper, we will take the last
step in the conformal programme and impose different gauge-fixings. This will give us the
D =5 matter couplings we are aiming at. It was recently [B] shown how this method can
be applied in the context of the RS scenario, for coupling the D = 5 bulk supergravity to
D = 4 brane matter multiplets in a superconformal invariant way. We hope that our more
general results may also be helpful in these investigations.

There is a rather different, more general, motivation of why the D = 5 matter-coupled
supergravities are interesting to study. The reason is that they belong to the class of the-
ories with eight supersymmetries [BY]. Such theories are especially interesting since the
geometry, determined by the kinetic terms of the scalars, contains undetermined functions.
Theories with 32 supersymmetries have no matter multiplets while the geometry of those
with 16 supersymmetries is completely determined by the number of matter multiplets. Of
course, theories with 4 supersymmetries allow for more general geometries. The restricted
class of geometries, in the case of 8 supersymmetries, makes these theories especially in-
teresting and manageable. For instance, the work of Seiberg and Witten [fi0)], heavily
relies on the presence of 8 supersymmetries. Theories with 8 supersymmetries are thus
the maximally supersymmetric theories that, on the one hand, are not completely deter-
mined by the number of matter multiplets in the model and, on the other hand, allow
arbitrary functions in their definition, i.e. continuous deformations of the metric of the
manifolds.

The geometry related to supersymmetric theories with 8 real supercharges is called
‘special geometry’. Special geometry was first found in [i2, ] for local supersymmetry
and in [i4, [f§] for rigid supersymmetry. It occurs in Calabi-Yau compactifications of type
IT superstrings as the moduli space of these manifolds [Ef]-[FI]. Special geometry was a
very useful tool in the investigation of supersymmetric black holes [2, fJ]. The work of
Seiberg and Witten [0, ] was based on the use of (rigid) special geometry. Later, the
AdS/CFT correspondence [p4] gave new applications of special geometry. So far, special
geometry had been mainly investigated in the context of four dimensions. In the context of
M theory compactifications on a Calabi-Yau [B], and with the advent of the brane-world
scenarios [, ], also the D = 5 variant of special geometry [p], called ‘very special geometry’,
received a lot of attention. The connection to special geometry was made in [p6]. Last
but not least, mathematicians got interested in special geometry due to its relation with
quaternionic geometry [i7], which lead to new results on the classification of homogeneous
quaternionic spaces [@, .

We mentioned already that a conformal tensor calculus for D = 5 matter multiplets
with 8 supersymmetries has already been introduced in [B4], B3|, B3]. However, there are still
some ingredients missing: in particular the geometrical features have not been discussed
at the most general level. In this paper, we use superconformal methods to fill this gap.
We start with listing the basic superconformal matter multiplets: vector/tensor multiplets,
linear multiplets and hypermultiplets. Some of these multiplets are off-shell, others imply
equations of motion that define dynamical models. The closure of the algebra leads to
equations that determine the evolution of the fields. In fact, by now we are used to handle



theories without starting from a bona-fide action. Indeed, this is the way in which we
often work with IIB supergravity, or theories with self-dual antisymmetric tensor fields.
Therefore, rather than starting to analyse the most general matter couplings from looking
for invariant actions, we first can start the analysis of the multiplets, which in some cases
already gives dynamical systems. The latter allow more general matter couplings than
those constructed from a lagrangian.

In particular, we will not only introduce vector multiplets in the adjoint representation
but, more generally, so-called ‘vector-tensor’ multiplets in arbitrary representations. This
includes couplings with an odd number of tensor multiplets. This may generalize the anal-
ysis made e.g. recently in [F9]. Furthermore, as far as the hypermultiplets are concerned,
we will introduce more general geometries than hyperkahler for rigid supersymmetry, or
quaternionic-Kéahler for supergravity. We can find dynamical theories also without the need
of an action, i.e. in hypercomplex geometry, which is hyperkéahler geometry where there
may not be a metric. Also in N = 8 theories in 5 dimensions, more general possibilities
were found in [p{] by considering theories where the dynamical equations are considered
without the necessity of an action.

In a second step, we construct rigid superconformal lagrangians. This will require an
extra ingredient, namely the existence of a certain covariant tensor, that is not available
for all dynamical systems and leads to a restriction on the possible geometries. In a last
step, we will extend the supersymmetry to a local conformal supersymmetry, making use
of the Weyl multiplet constructed in [B2], B3].

The first two steps discussed above only deal with the case of rigid conformal super-
symmetry. This case is sufficient to explain most of the subtleties concerning the possible
geometrical structures. It is only at the last step that we introduce the full complications
of coupling the matter multiplets to conformal supergravity.

The paper is organised as follows. First, in section P we perform step one and list
the basic superconformal matter multiplets. We construct and discuss the possible matter
couplings in the absence of a lagrangian. Next, in section f, we perform the second step
and construct rigid superconformal lagrangians. We discuss the restrictions on the possi-
ble geometries that follow from the requirement of a lagrangian. Finally, in section [, we
perform the last step and extend the supersymmetry to local superconformal symmetry,
making use of the Weyl multiplet constructed in [B2], B3. Our aim is twofold: we want
to determine and deduce the various restrictions from supersymmetry, and we want to
determine the independent geometrical quantities that are needed for constructing super-
conformal matter theories. Our results can be used as a starting point to obtain more
general matter couplings to Poincaré supergravity.

In a first appendix, we mention the linear multiplet, which does not play a big role in
our paper. Appendix B gives a summary of the properties of hypercomplex manifolds and
their place in the family of quaternionic-like manifolds. Explicit examples of hypercomplex
manifolds that are not hyperkihler are given in appendix [J] In that last appendix we
calculate explicitly the non-vanishing antisymmetric Ricci tensor for these manifolds, which
is also a new result.

The conventions that we use are given in [B2, appendix A].



2. Multiplets of rigid conformal supersymmetry

In this section, we will introduce the basic superconformal matter multiplets. We start
with giving a short review of rigid conformal supersymmetry in the first subsection. For a
more extended discussion, see e.g. [f1]. In the remaining subsections, we will discuss the
various multiplets: the vector-tensor multiplet, the linear multiplet and the hypermultiplet.

2.1 Definition of rigid conformal (super-)symmetry

We first introduce conformal symmetry and in a second step extend this to conformal super-
symmetry. Given a spacetime with a metric tensor g,,(x), the conformal transformations
are defined as the general coordinate transformations that leave “angles” invariant. The
parameters of these special coordinate transformations define a conformal Killing vector
k*(x). The defining equation for this conformal Killing vector is given by

dg.ct.(k)gu () =V, ky(2) + Vo ku(x) = w(z)gu(z), (2.1)

where w(x) is an arbitrary function, k, = g,,k" and the covariant derivative is given by
Vuky = 0k, — T'fiuk,. In flat D-dimensional Minkowski spacetime, (2.1]) implies

1
(9(Mkzy) (x) — Bnﬂyﬁpkp(x) =0. (2.2)

In dimensions D > 2, the conformal algebra is finite-dimensional. The solutions of ({.2)
are given by

kM (z) = & + M@, + Apat + (2?Al — 22tz - Ag) . (2.3)

Corresponding to the parameters & are the translations P,, the parameters A} corre-
spond to Lorentz rotations M, to Ap are associated the dilatations D, and A% are the
parameters of ‘special conformal transformations’ K,. Thus, the full set of conformal
transformations dc can be expressed as follows:

Sc = &Py + N My, + ApD + ALK, . (2.4)

The commutators between different generators define the conformal algebra which is iso-
morphic to the algebra of SO(D, 2).

We wish to consider representations of the conformal algebra on fields ¢“(x) where o
stands for a collection of internal indices referring to the stability subalgebra of z# = 0.
From the expression (R.3) for the conformal Killing vector, we deduce that this algebra is
isomorphic to the algebra generated by M,,,D and K,. We denote the generators of this
stability subalgebra by X, A and ;. Applying the theory of induced representations, it
follows that any representation (X, A, k) of the stability subalgebra induces a representation
of the full conformal algebra with the following transformation rules (we suppress any



internal indices):

po(r) = E0,0(),
() = N5 (0,0, — 2,0,)0(@) + s ar)(a).
Spd(x) = Apr*Ozd(x) + 6a(AD)d(x)
Srd(x) = Na (220, — 2xua:)‘8,\)¢(m) +

n <5A(—2x  Ak) + Os(—dzp i) + 5H(AK))¢(x) . (2.5)

We now look at the non-trivial representation (3, A, k) that we use in this paper. First,
concerning the Lorentz representations, in this paper we will encounter anti-symmetric
tensors @q,...a, () (n =0,1,2,...) and spinors 1, (z):

62()‘M)¢a1-“an($) = _n(AM)[albgb\b\az---an} (x)a
SO = — M (). (2.6

Second, we consider the dilatations. For most fields, the A transformation is just
determined by a number w, which is called the Weyl weight of ¢<:

oa(Ap)o® (x) = wApe®(x). (2.7)

For scalar fields, it is often convenient to consider the set of fields ¢® as the coordinates of a
scalar manifold with affine connection I',37. With this understanding, the transformation
of ¢ under dilatations can be characterized by:

6a(Ap)9®* = Apk“(¢). (2.8)

Requiring dilatational invariance of kinetic terms determined by a metric gog, the vec-
tor k% should be a homothetic Killing vector, i.e. it should satisfy the conformal Killing
equation (R.1)) for constant w(x):

Dakp +Dpka = (D = 2)gap , (2.9)

where D denotes the spacetime dimension and ®4ks = 9ok — Lag?ky. However, (R.9)
shows that the A-transformation also enters in the special conformal transformation. It
turns out that invariance of the kinetic terms under these special conformal transformations
restricts k%(¢) further to a so-called ezact homothetic Killing vector, i.e.,

ko = OaX s (2.10)
for some function x(¢). One can show that the restrictions (R.9) and (P.10)) are equivalent to
Dok’ = 04k” + T PKY = wd,” . (2.11)

The constant w is identified with the Weyl weight of ¢“ and is in general w = (D — 2)/2,
i.e. 3/2 in our case. The proof of the necessity of (R.11]) can be extracted from [(2], see



also [63, F4]. In these papers the conditions for conformal invariance of a sigma model
with either gravity or supersymmetry are investigated. By restricting the proof to rigid
conformal symmetry (without supersymmetry) we find the same conditions.

Note that the condition (R.11)) can be formulated independent of a metric. Only an
affine connection is necessary. Indeed, we will find the same condition from the closure of
the superconformal algebra before any metric and/or action has been introduced. In four
spacetime dimensions, this was done in [[J].

For the special case of a zero affine connection, the homothetic Killing vector is given
by k% = w¢® and the transformation rule (R.§) reduces to 6a(Ap)d® = wApé®. Note that
the homothetic Killing vector £% = w¢® is indeed exact with y given by

= k%gapk” . 2.12
X ( D — 2) Gap ( )
Finally, all fields that we will discuss in this paper are invariant under the internal
special conformal transformations, i.e. §,¢“ = 0.
We next consider the extension to conformal supersymmetry. The parameters of these
supersymmetries define a conformal Killing spinor €’(x) whose defining equation is given by

) 1 v )
Ve (z) — DY Ve (x) =0. (2.13)

In D-dimensional Minkowski spacetime this equation implies

. 1 4
Oy (z) — Bmﬂez(m) =0. (2.14)
The solution to this equation is given by
(x) = € + iztyn", (2.15)

where the (constant) parameters ¢’ correspond to “ordinary” supersymmetry transforma-
tions Q! and the parameters 1’ define special conformal supersymmetries generated by
S?. The conformal transformation (R.J) and the supersymmetries (R.15) do not form a
closed algebra. To obtain closure, one must introduce additional R-symmetry generators.
In particular, in the case of 8 supercharges Q% in D = 5, there is an additional SU(2)
R-symmetry with generators U;; = Uj; (i = 1,2). Thus, the full set of superconformal
transformations d¢ is given by:

6c = &Py + MY M, + ApD + ALK, + AU + 16Q + i7S . (2.16)

We refer to [BJ for the full superconformal algebra F?(4) formed by (anti-)commutators
between the (bosonic and fermionic) generators.

To construct field representations of the superconformal algebra, one can again apply
the method of induced representations. In this case one must use superfields ®¢(z#, 6?),
where a stands for a collection of internal indices referring to the stability subalgebra of
# = @', = 0. This algebra is isomorphic to the algebra generated by M,,,D,K,, U
and S?.



An additional complication, not encountered in the bosonic case, is that the represen-
tation one obtains is reducible. To obtain an irreducible representation, one must impose
constraints on the superfield. It is at this point that the transformation rules become non-
linear in the fields. In this paper, we will follow a different approach. Instead of working
with superfields we will work with the component “ordinary” fields. The different nonlinear
transformation rules are obtained by imposing the superconformal algebra.

In the supersymmetric case, we must specify the SU(2)-properties of the different
fields as well as the behaviour under S-supersymmetry. Concerning the SU(2), we will

only encounter scalars ¢, doublets ¢! and triplets ¢(/) whose transformations are given by

Ssu(2) (A7) = 0,
Ssu(e) (A9 (z) = =N (x)
Ssu(ay(AT)g (z) = —2AL 67 () | (2.17)

The scalars of the hypermultiplet will also have an SU(2) transformation despite the absence
of an i index. We refer for that to section R.3.9.

This leaves us with specifying how a given field transforms under the special super-
symmetries generated by S%. In superfield language the full S-transformation is given by a
combination of an z-dependent translation in superspace, with parameter ¢‘(z) = i:c“%mi,
and an internal S-transformation. This is in perfect analogy to the bosonic case. In terms
of component fields, the same is true. The z-dependent contribution is obtained by making
the substitution

i (2.15)
in the @Q-supersymmetry rules. The internal S-transformations can be deduced by imposing
the superconformal algebra. In the next three subsections, we will give the explicit form
of these internal S-transformations for different matter multiplets.

Finally, we give below some of the commutators of the (rigid) superconformal algebra
expressed in terms of commutators of variations of the fields. These commutators are
realized on all matter multiplets discussed in the next subsections. The commutators
between @- and S-supersymmetry are given by

o) dlen)] = o g, (2.19)
[65(n), g (€)] = ép <% ién> + On1 (% iEy“%) + 6y (—%iE“ﬁ”) , (2.20)
[05(m),05(n2)] = dk (%ﬁﬂ“?ﬁ) : (2.21)

For later use we list a few more commutators:
50(40).80(e)] = 3o (5¢Ap) (222)
(G50 (A7), b(h)| = dg (/7). (2.23)
(S5 (Ax) do(e))] = bs (ihxe) (2.24)



Field | SU(2) w # d.of.
off-shell vector multiplet

Al 1 0 4n

yil 3 2 3n

ol 1 1 In

i 2 3/2 8n
on-shell tensor multiplet

B) 1 0 3m

oM 1 1 1m

M 2 3/2 4m
on-shell hypermultiplet

q* 2 3/2 47

¢A 1 2 4r
off-shell linear multiplet

Li 3 3 3

E, 1 4 4

N 1 4 1

@ 2 7/2 8

Table 1: The D = 5 matter multiplets. We introduce n vector multiplets, m tensor multiplets
and r hypermultiplets. Indicated are their degrees of freedom, the Weyl weights and the SU(2)
representations, including the linear multiplet for completeness.

Note that to verify these commutators one should use not only the internal but the full
superconformal transformation rules including the z-dependent translations (see (R.5))) and
@-supersymmetries (see (R.18)).

Now it’s clear how generic fields transform under the superconformal group, we briefly
give the field content and properties of the basic superconformal multiplets in five dimen-
sions. They will be used for studying matter couplings in the remainder of this article.
The linear multiplet will only be used as the multiplet of the equations of motion for the
vector multiplet.

2.2 The vector-tensor multiplet

In this section, we will discuss superconformal vector multiplets that transform in arbi-
trary representations of the gauge group. From work on N = 2, D = 5 Poincaré matter
couplings [fl] it is known that vector multiplets transforming in representations other than
the adjoint have to be dualized to tensor fields. We define a vector-tensor multiplet to
be a vector multiplet transforming in a reducible representation that contains the adjoint
representation as well as another, arbitrary representation.

We will show that the analysis of [[l] can be extended to superconformal vector multi-
plets. In doing this we will generalize the gauge transformations for the tensor fields [[] by
allowing them to transform into the field-strengths for the adjoint gauge fields. These more
general gauge transformations are consistent with supersymmetry, even after breaking the
conformal symmetry.



The vector-tensor multiplet contains a priori an arbitrary number of tensor fields. The
restriction to an even number of tensor fields is not imposed by the closure of the algebra.
If one demands that the field equations do not contain tachyonic modes, an even number
is required [p5]. Closely related to this is the fact that one can only construct an action
for an even number of tensor multiplets. But supersymmetry without an action allows
the more general possibility. Note that these main results are independent of the use of
superconformal or super-Poincaré algebras.

To make contact with other results in the literature we will break the rigid conformal
symmetry by using a vector multiplet as a compensating multiplet for the superconformal
symmetry. The adjoint fields of the vector-tensor multiplet are given constant expectation
values, and the scalar expectation values will play the role of a mass parameter. This will
reduce the superconformal vector-tensor multiplet, for the case of two tensor multiplets, to

the massive self-dual complex tensor multiplet of [f].

2.2.1 Adjoint representation

We will start with giving the transformation rules for a vector multiplet in the adjoint
representation [B3. An off-shell vector multiplet has 8 + 8 real degrees of freedom whose
SU(2) labels and Weyl weights we have indicated in table [.
The gauge transformations that we consider satisfy the commutation relations (I =
1,...,n)
[5G(A{)7 5G(A2J)] = 5G(A§() ) Aé( = gA{AQJfIJK . (2'25)

The gauge fields AL (u=0,1,...,4) and general matter fields of the vector multiplet as
e.g. X! transform under gauge transformations with parameters A’ according to

Sa(A)AL = 9N + gA) Frc AR Sa(A)XT = —gA fr XK (2.26)

where g is the coupling constant of the group G. The expression for the gauge-covariant
derivative of X! and the field-strengths are given by

D X" =0, X" + gAs fr' X5, F, =20, Al + gfix"ALAL (2.27)
The field-strength satisfies the Bianchi identity
Dy, FV)\] 0. (2.28)

The rigid Q- and S-supersymmetry transformation rules for the off-shell Yang-Mills
multiplet are given by [B3]

1
614;]; = _E’Y,u?zz)l,

g 1 o

SV = Py gl oK g it
4 1 . g .

Syl = — 47 Flz—iiﬁalel—Y”Iej—i—anl,

Sol = 3 iapf. (2.29)

,10,



The commutator of two Q-supersymmetry transformations yields a translation with an
extra G-transformation

[5(e1), 6(e2)] = Gp (%gﬂﬂq> + 6 <—% ia€261> . (2.30)

Note that even though we are considering rigid superconformal symmetry, the algebra
(2.30) contains a field-dependent term on the righthand side. Such soft terms are common-
place in local superconformal symmetry but here they already appear at the rigid level. In
hamiltonian language, it means that the algebra is satisfied modulo constraints.

2.2.2 Reducible representation

Startlng from n vector multiplets we now WlSh to consider a more general set of fields
H{W (I=1,...,n+m). We write Hf ={Fl, BMywith T = (I, M) (I =1,...,m;M =
n+1,...n+m). The first part of these fields corresponds to the generators in the adjoint
representation. These are the fields that we used in subsection £.2.1] The other fields may
belong to an arbitrary, possibly reducible, representation:

(i) K = (tr)5 N | LJLK=1,...,n (231)
J MN =n+1,...,n+m.

It is understood that the (¢7) ;% are in the adjoint representation, i.e.

(tI)JK = fr™. (2.32)

If m # 0, then the representation (¢ 1) is reducible. We will see that this representation
can be more general than assumed so far in treatments of vector-tensor multiplet couplings.
The requirement that m is even will only appear when we demand the existence of an
action in section B.J, or if we require absence of tachyonic modes. The matrices ¢; satisfy
commutation relations

[t],t]] = —f]JKtK, or tH"\',MtJML —tJ]"\',MtUV[L = —f]JKtKNL. (2.33)

If the index L is a vector index, then this relation is satisfied using the matrices as in (2-39).

Requiring the closure of the superconformal algebra, we find Q- and S-supersymmetry
transformation rules for the vector-tensor multiplet and a set of constraints. The transfor-
mations are

(YH{W = —E’V[M'DV]IbI + igg’yuyt(jf()la‘]sz + iﬁ'mﬂ/fly

= 1 = N 7o 1. 07
Syl = ——6(2’D¢] - —1ge( (t[ij[ —3t(jl~()l> ol DK 4 —117( P!
iT 1 = o 1
syl = - .’}—(IEZ—§i’DO'IEZ—YUIEj—|—§gt(JK) [5] oK gi —|—U n,
~ 1 ~
Sol = 51@# . (2.34)

The curly derivatives denote gauge-covariant derivatives as in (R.27) with the replacement
of structure constants by general matrices ¢; according to (P.32). We have extended the
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range of the generators from I to I in order to simplify the transformation rules with the
understanding that -
K
(tm)7 =0. (2.35)
We use a convention where (anti)symmetrizations are done with total weight 1. We find
that the supersymmetry algebra (P.30)) is satisfied provided the representation matrices are
restricted to
I _
t(jf() =0, (2.36)

and provided the following two constraints on the fields are imposed:

= ~ e 1 v s

LV =gy <20"Y”K -3 W"zﬁjl{) =0, (2.37)
~ 3 ~ ~ ~ 0.~ 1 . o~ o ~

EZLV)\ = ;D[un\]I - 5uu)\pot(jf()l <0'JHP K + Z IZZ)J’VP ¢K> =0. (238)

For I = I, the constraint (2:3§) reduces to the Bianchi identity (P:28). The tensor F ;{u
can therefore be seen as the curl of a gauge vector Aﬁ. Moreover, tlr~1e constraint (R.37) is
trivially satisfied for I = I. We conclude that the fields with indices I = I form an off-shell
vector multiplet in the adjoint representation of the gauge group.

On the other hand, when I = M, the constraint (B-3§) does not permit the fields
B% to be written as the curl of a gauge field and they should be seen as independent
tensor fields. Instead, the constraint (P.3§) is a massive self-duality condition that puts
the tensors B% on-shell. The constraint (P.37) implicitly allows us to eliminate the fields
YUM altogether. The general vector-tensor multiplet can then be interpreted as a set of
m on-shell tensor multiplets in the background of n off-shell vector multiplets.

Using (R.36) we have reduced the representation matrices t; to the following block-

(tl)jf( _ <fIJK (tI)JN) ) (239)

upper-triangular form:

0 (tnu"

In [0 it is mentioned that, “since terms of the form BM A FI A A7 appear to be impos-
sible to supersymmetrize in a gauge invariant way (except possibly in very special cases)
we shall also assume that Cp;r; = 07. This corresponds, as we will see below, to the
assumption that the representation is completely reducible, i.e. t7;¥ = 0, meaning that
gauge transformations do not mix the pure Yang-Mills field-strengths and the tensor fields.
However, we find that off-diagonal generators are allowed, both when requiring closure of
the superconformal algebra and when writing down an action. We thus allow reducible,
but not necessarily completely reducible representations.

Recall that every unitary reducible representation of a Lie group is also completely
reducible, and that every representation of a compact Lie group is equivalent to a unitary
representation. Hence, every reducible representation of a compact Lie group is also com-
pletely reducible. Non-compact Lie groups, on the other hand, have no non-trivial and
finite-dimensional unitary representations. However, every reducible representation of a
connected, semi-simple, non-compact Lie group or a semi-simple, non-compact Lie algebra
is also completely reducible. See [66] for an exposition of these theorems.
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This leaves us with the class of non-compact Lie algebras that contain an abelian
invariant subalgebra. Examples of non-diagonal terms can thus be given for ¢; of the form

(tr);~ = (8 (i LJM> . (2.40)

The simplest one is thus with one gauge multiplet and a number of tensor multiplets, with
only the off-diagonal parts ¢1;™ non-vanishing. But more examples are possible, e.g. the
lower right corner does not have to be zero.

The constraints (2:37) and (2:33), with I = M, do not form a supersymmetric set:
they are invariant under S-supersymmetry but under Q-supersymmetry they lead to a
constraint on the spinors ¢*™ which we will call p*:

SLIM = jeliphM — §EM = Ey,,,0M . (2.41)

The expression for this constraint is given by
4 S N | -
oM = t(jf()M [IUJWL/J@K 4 5 ; <¢UJ> WK 4 szJwé( _ Z’Y ) HszK] _

i P 1 - o
-9 <[t[jf(]L - 3t(j[~()L] t(fE)M + §tijt(I~(Z)M> UIUszK
- (2.42)

The second line can be rewritten, by splitting the indices in tensor versus vector parts, as
1

49010_ij (trty + 2tJt[)I"( M (2.43)

1 ~
+590" T (ki) M +

Varying the new constraint ¢’ under Q-and S-supersymmetry, one finds at first sight
two more constraints, £ and N™ | of which the first one turns out to be dependent (see

below):

. 1 g 1 1 1 o
sptM = —iiﬁL”MEj — iiyaEéVIeZ + §NM6’ — §gtj[~(MJJL”KEj —
1 s y
13 1gt(ﬁ~()M7abca‘]E£cez + 3LHMy, (2.44)

The constraint N is given by

A S DT B SN B
NM = t(jf()M (O_JDO_K + §DaO_JDa0.K _ ZHngabK _ §,¢)erwK +YUJ}/Z']'K> _

. 1 i M i M| 77K

- 19{‘5%} fim) ™+ 20a) tEy | o YT
1 ~
+592 (t[tJtK)zMO'IO'JO'KO'L

=0, (2.45)

and for EM we find

~ ~ 1 . o~ 1 ~ ~
By =t (Db (aJHbaK + 197 a0 ™ ) - ggabcder’cJ HIK ) =0. (2.46)
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We made use of identities as
L M L M L M _
th t(]z) + tKj t(fi) — t(7j> th =0, (2.47)

which follow from the commutator relation (R.33)), and the restrictions (P.35) and (R.36)).

We find that the expression for F, is related to the one corresponding to Eé\gc as
follows: 1
EM — _ ¢ s DV ECdeM | (2.48)

@ 12
By now we have found a set of constraints that under Q- and S-supersymmetry trans-
form to each other. These constraints do not seem to form a multiplet by themselves.

2.2.3 The massive self-dual tensor multiplet

To obtain the massive self-dual tensor multiplet of [BH], we consider a vector-tensor mul-
tiplet for general n and m. Our purpose is to use the vector multiplet as a compensating
multiplet for the superconformal symmetry. Thus, we impose conditions on the fields that
break the conformal symmetry, and preserve Q-supersymmetry. We give the fields of the
vector multiplets the following vacuum expectation values

g . 2m!
Fl,=Y"=yl=0, o= 5 (2.49)
where m! are constants. Note that these conditions break the conformal group to the

Poincaré group, and break S-supersymmetry (7 = 0). This is an example of a compensating
multiplet in rigid supersymmetry. The breaking of conformal symmetry is characterized

by the mass parameters m! in (2:49). If we substitute (P-49) into the expression (P-37) for
LM then we find that we can eliminate the field Y9M

YiaM — . (2.50)
Moreover, we can also substitute (P.49) into the constraints E %)\, ©"™M and NM obtaining

1

3(9[MB%I\] = §6MVAPUMNMBpJN,
4
Oo™ = — (M?) NMo™ — —tr NmIm! MM (2.51)
g

The mass-matrix MyM is defined as
MNM = gO'I(t])NM = QmI(t[)NM, (2.52)

and has been assumed to be invertible. The last term of (P.51)) can be eliminated by
redefining o™ with a constant shift. In order for the tensor fields to have no tachyonic
modes, the mass-matrix needs to satisfy a symplectic condition which can only be satisfied

if the number of tensor fields is even [p5]. We denote the number of tensor multiplets
by m = 2k.
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In the particular gauge (R.49) and representation (P.40)) the mass matrix M is zero.
The last two equations in (R.51]) are not present and the first one becomes the usual Bianchi
identity for a set of m abelian vectors. Thus, we are dealing with n + m off-shell gauge
vectors.

To obtain the massive self-dual tensor multiplet of [fJ] we consider the case n = 1,
m = 2, i.e. two (real) tensor multiplets {B%, XM @M (M, N = 2,3) in the background of
one vector multiplet {F),, ¢*, o'}, which has been given the vacuum expectation value (2.49).
In what follows we will use a complex notation:

Bw=B,,+iB},,  Bu.=B., —iB,. (2.53)

The generators (t1);” must form a representation of U(1) ~ SO(2). Under a U(1) trans-
formation the field-strength F),, is invariant and the tensor field gets a phase

!
: B2 cosf —sinf B2
B =B o = e 2.54
p = € By (Bﬁ,j) <sin0 cosf ) (Bﬁ,j) (2.54)

From this we obtain the generator

{00 0
t);77=100-1]. (2.55)
010

After substituting the conditions (R.49) into the transformation rules we obtain

0B, = —E’Y[“al,])\ — MEY A,

4 1 1 . .
ON' = -1 Be' — iiagf)el — imaoe*,
1
0p = 5i€)\, (2.56)
and
38[“31,)\] - imewj)\prpg =0. (2.57)

This reproduces the massive self-dual tensor multiplet of [B5]. Note that the commutator
of two Q-supersymmetries yields a translation plus a (rigid) U(1)-transformation whose pa-
rameter can be obtained from the general G-transformation in the superconformal algebra,
see (R.30), by making the substitution (R.49).

From a six-dimensional point of view the interpretation of the mass parameter m is
that it is the label of the m-th Kaluza-Klein mode in the reduction of the D = 6 self-dual
tensor multiplet. The zero-mode of the reduced tensor multiplet corresponds to a vector
multiplet as can be seen from (R.57) which becomes a Bianchi identity for a field-strength

when m = 0.
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2.3 The hypermultiplet

In this subsection, we discuss hypermultiplets in five dimensions. As for the tensor multi-
plets, there is in general no known off-shell formulation with a finite number of auxiliary
fields. Therefore, the supersymmetry algebra already leads to the equations of motion.

A single hypermultiplet contains four real scalars and two spinors subject to the sym-
plectic Majorana reality condition. For » hypermultiplets, we introduce real scalars g% (x),
with X = 1,...,4r, and spinors CA(m) with A = 1,...,2r. To formulate the symplectic
Majorana condition, we introduce two matrices p4” and E;7, with

pp* = —]121«, EE* == —12 . (258)

This defines symplectic Majorana conditions for the fermions and supersymmetry trans-
formation parameters [p7:

aCy(Ppp? = (¢4)",  aCyd B = (¢)", (2.59)

where C is the charge conjugation matrix, and « is an irrelevant number of modulus 1. We
can always adopt the basis where E;J = gij, and will further restrict to that.

The scalar fields are interpreted as coordinates of some target space, and requiring
the on-shell closure of the superconformal algebra imposes certain conditions on the target
space, which we derive below. Superconformal hypermultiplets in four spacetime dimen-
sions were discussed in [B{]; our discussion is somehow similar, but we extend it to the case
where an action is not needed, in the spirit explained in [B9].

2.3.1 Rigid supersymmetry

We will show how the closure of the supersymmetry transformation laws leads to a ‘hyper-
complex manifold’. The closure of the algebra on the bosons leads to the defining equations
for this geometry, whereas the closure of the algebra on the fermions and its further con-
sistency leads to equations of motion in this geometry, independent of an action.

The supersymmetry transformations (with €’ constant parameters) of the bosons ¢*(z),
are parametrized by arbitrary functions fﬁ(q) Also for the transformation rules of the
fermions we write the general form compatible with the supersymmetry algebra. This
introduces other general functions fi(g) and wxp“(q):!

S(e)g® = —ie¢f,

3(e)¢? = %i@qxfg(AEi — Puxp™(8(e)q™). (2.60)

The functions satisfy reality properties consistent with reality of ¢* and the symplectic
Majorana conditions, e.g.:

(1) = FPEf s, (wxa®) = (07 wxp) . 7. (2.61)

In fact, one can write down a more general supersymmetry transformation rule for the fermions than

in (), but using Fierz relations and simple considerations about the supersymmetry algebra, one can
bring its form into the one written above.
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A priori the functions fz)fl and fg(A are independent, but the commutator of two supersym-
metries on the scalars only gives a translation if one imposes

A =0v, =10,
Dy fiy = Oy fis —wypg fis + T 155 =0, (2.62)

where I'xyZ is some object, symmetric in the lower indices. This means that fl-)fl and f}{‘
are each others inverse and are covariantly constant with connections I' and w. It also
implies that p is covariantly constant. The conditions (2.62)) encode all the constraints on
the target space that follow from imposing the supersymmetry algebra. Below, we show
that there are no further geometrical constraints coming from the fermion commutator;
instead this commutator defines the equations of motion for the on-shell hypermultiplet.

The supersymmetry transformation rules are covariant with respect to two kinds of
reparametrizations. The first ones are the target space diffeomorphisms, ¢* — ¢~ (q),
under which fz)1(4 transforms as a vector, wxa®? as a one-form, and I"yy? as a connection.
The second set are the reparametrizations which act on the tangent space indices A, B, . ..
On the fermions, they act as

¢t — Mg) = ¢PUsa), (2.63)

where U(q)4® is any invertible matrix. In general, such a transformation brings us into
a basis where the fermions depend on the scalars ¢X. In this sense, the hypermultiplet is
written in a special basis where ¢ and ¢4 are independent fields. The supersymmetry
transformation rules (2.6() are covariant under (P-63) if we transform fif(q) as a vector

B

and wx 4° as a connection,

wxaP? = Ox AP = [(0xUHU + U twx U2 . (2.64)
These considerations lead us to define the covariant variation of the fermions:
5¢A = 6¢4 + Buxpiot, (2.65)

for any transformation § (supersymmetry, conformal transformations,...). Two mod-
els related by either target space diffeomorphisms or fermion reparametrizations of the
form (P.63) are equivalent; they are different coordinate descriptions of the same system.
Thus, in a covariant formalism, the fermions can be functions of the scalars. However,
the expression dx(* makes only sense if one compares different bases. But in the same

A

way also the expression (Bwyp? makes only sense if one compares different bases, as the

connection has no absolute value. The only covariant object is the covariant derivative
Dx¢* = 0x¢" + Puxp?. (2.66)

The covariant transformations are also a useful tool to calculate any transformation on e.g.
a quantity Wa(q)¢4:

8§ (Wa(a)¢?) = 9x (Wac?) 6¢™ +Wa 6¢4|,
= Dy (Wac?) 6~ + Wi (&A — @XCAéqX>
= (DxWa) 5¢™ ¢* + Wad(". (2.67)
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We will frequently use the covariant transformations (R.65). It can similarly be used on
target-space vectors or tensors. E.g. for a quantity AX:

SAX =AY + AYT 4y X547 . (2.68)

The geometry of the target space is that of a hypercomplex manifold. It is a weakened
version of hyperkéahler geometry where no hermitian covariantly constant metric is defined.
We refer the reader to appendix [B| for an introduction to these manifolds, references and
the mathematical context in which they can be situated.

The crucial ingredient is a triplet of complex structures, the hypercomplex structure,
defined as

JxY = =i f eI fla (2.69)

Using (R.69), they are covariantly constant and satisfy the quaternion algebra
JOJP = —14,.0%0 4 2PV J7 (2.70)
At some places we also use a doublet notation, for which
Ix¥V i =1J%Y (0%),7 = 232 1 — 610% . (2.71)

The same transition between doublet and triplet notation is used also for other SU(2)-
valued quantities.

The holonomy group of such a space is contained in G {¢(r,H) = SU*(2r)xU(1), the
group of transformations acting on the A, B-indices. This follows from the integrability
condltlons on the covariantly constant vielbeins f , which relates the curvatures of the
wx A and T'xy#Z connections (see appendix B.2 for conventions on the curvatures),

Rxyz" = I fPRxve", 8 Rxys”™ = fii fsRxvz" (2.72)

such that the Riemann curvature only lies in G ¢(r, H). Moreover, from the cyclicity prop-
erties of the Riemann tensor, it follows that

1

fc)‘(z'f};)RXYBA = —§€z‘jWCDBA,
. 1. .
Weps™ = fE fipRxys” = 3 & Fp jZBf{/?/]RXYZWa (2.73)

where W is symmetric in all its three lower indices. For a more detailed discussion on hy-
percomplex manifolds and their curvature relations, we refer to appendix B} We show there
that, in contrast with hyperkéhler manifolds, hypercomplex manifolds are not necessarily
Ricci flat; instead, the Ricci tensor is antisymmetric and defines a closed two-form.

We have so far only used the commutator of supersymmetry on the hyperscalars, and
this lead us to the geometry of hypercomplex manifolds. Before continuing, we want to see
what are the independent objects that determine the theory, and what are the independent
constraints. We start in the supersymmetric theory from the vielbeins fg(A. They have to
be real in the sense of (R.61]) and invertible. With these vielbeins, we can construct the
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complex structures as in (R.69). In the developments above, the only remaining indepen-
dent equation is the covariant constancy of the vielbein in (R.62)). This equation contains
the affine connection I'yy?Z and the G {(r, H))-connection wxa?. These two objects can
be determined from the vielbeins if and only if the (‘diagonal’) Nijenhuis tensor (B.24)
vanishes. Indeed, for vanishing Nijenhuis tensor, the ‘Obata’-connection [§g]

1
Z w U w z
I'xy? = _6 (28(XJay) —i-EOéB’YJﬁ(X ({9‘U|J’yy) >JaW , (2.74)
leads to covariantly constant complex structures. Moreover, one can show that any tor-
sionless connection that leaves the complex structures invariant is equal to this Obata

connection (similar to the fact that a connection that leaves a metric invariant is the Levi-
Civita connection). With this connection one can then construct the G ¢(r, H)-connection

1 i
wxa® =S {7 (Ox fla + Txzf{h) (2.75)

such that the vielbeins are covariantly constant.

Dynamics. Now we consider the commutator of supersymmetry on the fermions, which
will determine the equations of motion for the hypermultiplets.

Using (R.62), (R.72) and (R.73)), we compute this commutator on the fermions, and find?

1 1 1
[5(61), 5(62)]CA = —({9aCA€2"}/a61 + —PAEQQ — —’yaFAgg’yaEl . (2.76)
2 4 4

The I'* are the non-closure functions, and define the equations of motion for the

fermions,
1 _
4 =9¢t + §WCDBACBCDCC7 (2.77)
where we have introduced the covariant derivative with respect to the transformations (P.65))

D¢ = 0t + (040 ) Puxp™. (2.78)

By varying the equations of motion under supersymmetry, we derive the corresponding
equations of motion for the scalar fields:

~ 1 .
S(e)r = 5 e AX (2.79)

where
1- X 1 _ _ )
AX =0g¢* - §CB’YaCD3anf1@/Cfi),(4WBCDA - Z’DYwBCDACECDCCCBfﬁ;Y X, (2.80)
and the covariant laplacian is given by

Og* = 0,0°¢% + (9uq") (0"¢”) Ty~ (2.81)

2To obtain this result, we use Fierz identities expressing that only the cubic fermion combinations of [@,
(A.11)] are independent:
=C =C
¢ = =g P
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In conclusion, the supersymmetry algebra imposes the hypercomplex constraints (R.62)
and the equations of motion (R.77) and (R.80). These form a multiplet, as (R.79) has the
counterpart

3()AX = —i@PrAfX +21érBCCCP LR  vep, (2.82)

where the covariant derivative of T'4 is defined similar to (R.78). In the following, we will
derive further constraints on the target space geometry from requiring the presence of
conformal symmetry.

2.3.2 Superconformal symmetry

Now we define transformation rules for the hypermultiplet under the full (rigid) supercon-
formal group. The scalars do not transform under special conformal transformations and
special supersymmetry, but under dilatations and SU(2) transformations, we parametrize

Sp(Ap)g* = Apk™(q),
Ssu2) (A7) = AV (), (2.83)
for some unknown functions k%X (q) and k@)]( (q).
To derive the appropriate transformation rules for the fermions, we first note that the
hyperinos should be invariant under special conformal symmetry. This is due to the fact

that this symmetry changes the Weyl weight with one. If we realize the commutator ()
on the fermions ¢4, we read off the special supersymmetry transformation

5s(n' )¢ = —kX fidn;. (2.84)

To proceed, we consider the commutator of regular and special supersymmetry (R.20).
Realizing this on the scalars, we determine the expression for the generator of SU(2) trans-
formations in terms of the dilatations and complex structures,

1 1
kl)]( = gkYJyXij or kX = gk‘YJO‘YX- (2.85)

Realizing (R.2() on the hyperinos, we determine the covariant variations

op¢h =2ApCt,  dsup(t=0, (2.86)

and furthermore the commutator (R.20)) only closes if we impose

3
Dy kX = iayx, (2.87)
which also implies
1
Dy kX = 5J“YX. (2.88)

Note that (R.87) is imposed by supersymmetry. In a more usual derivation, where one
considers symmetries of the lagrangian, we would find this constraint by imposing dilatation
invariance of the action, see (R.11]). Our result, though, doesn’t require the existence of an
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action. The relations (R.87) and (R.85) further restrict the geometry of the target space,
and it is easy to derive that the Riemann tensor has four zero eigenvectors,

KXRxyz" =0, kX Rxyz" =0. (2.89)

Also, under dilatations and SU(2) transformations, the hypercomplex structure is scale
invariant and rotated into itself,

Ap (k‘ZazJaxy — azkiYJaXZ + 8kaJaZY) =0,
AP <k:ﬁZ82JaXY — 8Zk5YJ°‘XZ + akaZJ“ZY> = —6aﬂ’yA6J7XY. (2.90)
All these properties are similar to those derived from superconformal hypermultiplets

in four spacetime dimensions [69, B0]. There, the Sp(1) x G ¢(r,H) sections, or simply,
hypercomplex sections, were introduced

AP =K FE, (AP) = AR pe” (2.91)

which allow for a coordinate independent description of the target space. This means
that all equations and transformation rules for the sections can be written without the
occurrence of the ¢ fields. For example, the hypercomplex sections are zero eigenvectors
of the G{(r,H) curvature,

ABWpept =0, (2.92)

and have supersymmetry, dilatation and SU(2) transformation laws.

~ 3 3 . 3 o

SAB — 5 fi8ogy = —51343 + iADAiB — AL AIB (2.93)
where § is understood as a covariant variation, in the sense of (B-67).

2.3.3 Symmetries

We now assume the action of a symmetry group on the hypermultiplet. We have no action,
but the ‘symmetry’ operation should leave invariant the set of equations of motion. The
symmetry algebra must commute with the supersymmetry algebra (and later with the full
superconformal algebra). This leads to hypermultiplet couplings to a non-abelian gauge
group G. The symmetries are parametrized by

d6q~ = —gAGkT (9)

0cC? = —gAEtis?(9)¢P. (2.94)
The vectors k;( depend on the scalars and generate the algebra of G with structure con-
stants fr;%,

1
ki Oy kS = —§f1JK ks . (2.95)

The commutator of two gauge transformations (R.25) on the fermions requires the following
constraint on the field-dependent matrices ¢7(q),

tr,t)p" = —fr%txp? — 2k Dxt 15" + kK Rxyp . (2.96)
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Requiring the gauge transformations to commute with supersymmetry leads to further
relations between the quantities kf( and t;p?. Vanishing of the commutator on the scalars
yields

tig” i = Dvki flp . (2.97)

These constraints determine #;(g) in terms of the vielbeins fi! and the vectors k7Y,

1 .
tIAB = 5fl§©yk;(le ) (298)
and furthermore
£ Py kY =o0. (2.99)

The relations (2.99) and (R.9§) are equivalent to (2.97). We interpret (P.98) as the definition

for t74”. The vanishing of an (i5)-symmetric part in an equation as (P.99) can be expressed

as the vanishing of the commutator of ’Dykf{ with the complex structures:?

(Dxk)) Jv? = J*x" (Dyk]). (2.100)
Extracting affine connections from this equation, it can be written as
(['k]Ja)X Y = kIZBZJO‘XY — 8zk}/JaXZ + BXk:IZJO‘ZY =0. (2.101)

The left-hand side is the Lie derivative of the complex structure in the direction of the
vector k7. In part [B.J of the appendix, it is mentioned that ( is a special case of the
statement that the vector k; normalizes the hypercomplex structures. The latter would
allow that this Lie derivative is proportional to a complex structure. Killing vectors which
normalize the hypercomplex structure can be decomposed in an SU(2) part and a G £(r, H)
part. The vanishing of this Lie derivative, or (R.99), is expressed by saying that the gauge
transformations act triholomorphic. Thus, it says that all the symmetries are embedded in
G ¢(r, H).
Vanishing of the gauge-supersymmetry commutator on the fermions requires

Dytral = k¥ Ryxa®. (2.102)
Using (£.97) this implies a new constraint,
DxDyvk? = RxwyZkl . (2.103)

Note that this equation is in general true for any Killing vector of a metric. As we have no
metric here, we could not rely on this fact, but here the algebra imposes this equation. It
turns out that (R.99) and (R.103) are sufficient for the full commutator algebra to hold. In

particular, (R.103) follows from (R.103), using the definition of ¢ as in (R.98)), and (P.72).
A further identity can be derived: substituting (R.109) into (R.96)) one gets

trtss” = —fr/te™ — ki kY Rxyp™ . (2.104)

3This can be seen directly from lemmaﬁ in appendix E
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This identity can also be obtained from substituting (R.98)) in the commutator on the left
hand side, and then using (£.95), (R.99), (R.103) and (R.72).

The group of gauge symmetries should also commute with the superconformal algebra,

in particular with dilatations and SU(2) transformations. This leads to
3 1
EYDyky = ikf . kY Dykr = 5kf,ﬁfayx, (2.105)

coming from the scalars, and there are no new constraints from the fermions or from other
commutators. Since @y/{?;( commutes with J% X, the second equation in ( is a
consequence of the first one.

In the above analysis, we have taken the parameters Al to be constants. In the
following, we also allow for local gauge transformations. The gauge coupling is done by
introducing vector multiplets and defining the covariant derivatives

Z)uq ud +9A1k17
HCA G+ 0 wx P + gAlt ¢ (2.106)

The commutator of two supersymmetries should now also contain a local gauge transfor-
mation, in the same way as for the multiplets of the previous sections, see (R.30). This
requires an extra term in the supersymmetry transformation law of the fermion,

(et = —115qX Yei+ galkfff)‘(ei. (2.107)

With this additional term, the commutator on the scalars closes, whereas on the fermions,
it determines the equations of motion

1 = . i
T4 =D+ S Weop (O —g(iht fxu™ + 1¢Potp) =0, (2.108)

with the same conventions as in (R.70]).
Acting on T4 with supersymmetry determines the equation of motion for the scalars

AX = DqX——c (DY i€ fAWeep™® ——QYWBCD CECPCOCB Y 15 -
—g (21¢ZICBt[BA iA— ]{71 Jy Z’jYZ]I) —|—g o Ujgyk kJ . (2109)

The first line is the same as in (R.80]), the second line contains the corrections due to the
gauging. The gauge-covariant laplacian is here given by

= 0,9 4+ ¢Daq¥ Oy k¥ AY + 0,6V DUATS,. (2.110)

The equations of motions I'4 and AX still satisfy the same algebra with (R.79) and (2.89).

3. Rigid superconformal actions

In this section, we will present rigid superconformal actions for the multiplets discussed
in the previous section. We will see that demanding the existence of an action is more
restrictive than only considering equations of motion. For the different multiplets, we find
that new geometric objects have to be introduced.
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3.1 Vector multiplet action

The coupling of Poincaré-supergravity to n vector multiplets (having n scalars ¢®) is com-
pletely determined by an (n + 1)-dimensional constant symmetric tensor Crr [B]. The
reason for the difference in the number of scalars and the rank of Cj;x is that the graviton
multiplet also contains a vector field called the graviphoton.

The tensor Crjx appears directly in the A A FF A F Chern—Simons couplings, and
indirectly in all other terms of the action.

In particular, the manifold parametrized by the scalars ¢* of the vector multiplets can
be viewed as an n-dimensional hypersurface in an (n + 1)-dimensional space parametrized
by n + 1 coordinates o (¢?):

Crigololo® =1. (3.1)

The resulting geometry goes under the name of “very special geometry”. For every value
of n there are many different “very special real” manifolds: a classification of such spaces
that are homogeneous was given in [p6]. This classification includes the previously found
symmetric spaces [{, [0].

From the viewpoint of superconformal symmetry, the equation (B.1]) looks like a gauge-
fixing condition for dilatation invariance. Indeed, it turns out that the coupling of n vector
multiplets (with n scalars o) in rigid supersymmetry (or in conformal supergravity as we
will give the generalization in section fJ) is also completely determined by the tensor Crx,
but in contrast to the case of Poincaré supergravity, this tensor will multiply the complete
action, not just the Chern—Simons term.

The rigidly superconformal invariant action describing n vector multiplets was obtained
from tensor calculus using an intermediate linear multiplet in [B5]. The abelian part can be
obtained by just taking the (cubic) action of one vector multiplet as given in [B2], adding
indices I, J, K on the fields and multiplying with the symmetric tensor Cyjx. For the
non-abelian case, we need conditions expressing the gauge invariance of this tensor:

fi"Crrym = 0. (3.2)

Moreover one has to add a few more terms, e.g. to complete the Chern—Simons term to its
non-abelian form. This leads to the action

1 1- 1 .
Lvector = [<_ZFJVFWJ - §¢IZD¢J - §DaJID“0J + YéY”‘]> o —

L ywrpo g1 (g g L gk L oo J K
- ﬂewj P A;L (FV)\Fpa + 59["41/"’4)\] chr + Eg [AV’AA] [ApaAU] -
1 - 1 - . 1 -
— SiPly FIR - ity Y ZlngszafanLHK} Crrx - (3.3)

The equations of motion for the fields of the vector multiplet following from the ac-
tion (B.3) are
0=LY =} = B¢ = Np, (3.4)
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where we have defined

y . 1 .. .

LY = Crjk <20'JY”K —3 iW‘]WK> ,
i . . 1. X . 1 )

¢i = Crx <wJWK + 5 1Pyt + Y — 2y FWK) -

—9Crix fraol oty
1. - 1
Ear = Cryx [Db (aJFbaK + le"%awﬂ - gaabcdercJFdeK] -

1 _
— §QCJKLf1HJUK1/JL’Ya¢H —9Ciknfir’ oo Do’

1 1 1- .
NI = CIJK <O'J‘:|O'K + §DaO'JDaO'K _ ZF(;]bFabK _ 5,&]@,&[( _{_YZ]J}/'Z]K) +
1, -
t3 19Crk fru™ o’ PPy (3.5)

We have given these equations of motion the names LZ'Ij , ¢§, FEq1, N1 since they form a linear
multiplet in the adjoint representation of the gauge group for which the transformation rules
have been given in (A.1)).

3.2 The vector-tensor multiplet action

We will now generalize the vector action (B.3)) to an action for the vector-tensor multiplets
(with n vector multiplets and m tensor multiplets) discussed in section P.2.2.

The supersymmetry transformation rules for the vector-tensor multiplet (R.34]) were
obtained from those for the vector multiplet (2.29) by replacing all contracted indices by
the extended range of tilde indices. In addition, extra terms of O(g) had to be added to
the transformation rules. Similar considerations apply to the generalization of the action,
as we will see below.

To obtain the generalization of the Chern-Simons (CS) term, it is convenient to rewrite
this CS-term as an integral in six dimensions which has a boundary given by the five-
dimensional Minkowski spacetime. The six-form appearing in the integral is given by

Liector = Cryx FIF/FE (3.6)

where we have used form notation. This six-form is both gauge-invariant and closed, by
virtue of (B.2) and the Bianchi identities (R.2§). It can therefore be written as the exterior
derivative of a five-form which is gauge-invariant up to a total derivative. The spacetime
integral over this five-form is the CS-term given in the second line of (B.3).

We now wish to generalize (B.6) to the case of vector-tensor multiplets. It turns out
that the generalization of (B.6) is somewhat surprising. We find

i 3
Ivecftensor = ijf(HIHJHK - ;QMNDBMDBN . (37)

The tensor sy is antisymmetric and invertible, and it restricts the number of tensor
multiplets to be even

Qun = —Qnar, Qu pQME = 5,1 (3.8)
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The covariant derivative of the tensor field is

DABY, = 0\BN, + g Akt N1,
= a)\B +gA t[JNFJ +gA t[pNB;. (3.9)

When this is reduced to 5 dimensions, one of the H factors of the first term of (B.7)
should correspond to a vector field strength FT in order that it can be written as a 5-form
ATHIHE. Thus, the components of C' can have only three different forms, namely Cr g,
Cryym and Cryrny (and permutations).

To see why (B.7) is a closed six-form, we write out the first term of (.7)

CTJI}HTHJHE = C[JKFIFJFK + 3C]JMFIFJBM =+ 3C]MNFIBMBN . (3_10)

Since the BM tensors in (B.10) do not satisfy a Bianchi identity, we also need the second
term in (B.]) to render it a closed six-form. This requirement of closure leads to the
following relations between the C and €2 tensors:

1
Crom =ty Qv Crun = §tIMPQPN- (3.11)
We stress that the tensor Cj5 is not a fundamental object: the essential data for the

vector-tensor multiplet are the representation matrices ¢, jK , the Yang-Mills components
CriK, and the symplectic matrix 2,75. The tensor components of the C tensor are derived
quantities, and we can summarize (B.11]) as

C (3.12)

P
ik = tgry eu-
From (B.11]), we deduce that the second term of (B.10]) only depends on the off-diagonal
(between vector and tensor multiplets) transformations. The first term of (B.10)) will induce
the usual five-dimensional CS-term. The generalized CS-term induced by the third term

of (B.10) was given in [ll. With our extension to also allow for the off-diagonal term
in (£.39), we also get CS-terms induced by the Cy; components, which were not present

in [f.
Gauge invariance of the first term of (B.7) requires that the tensor C satisfies a modified

version of (B.9)
F1" Crpyn =t ™ trn) Q- (3.13)

In addition to this, the second term of (B.7) is only gauge invariant if the tensor 2 satisfies
tie” Qe =0, (3.14)

such that the last one of (B.11)) is consistent with the symmetry (MN). The two condi-
tions (B.13) and (B.14) combined with the definition (B.12) imply the following generaliza-

tion of (B.9)

M
tri Criyir = 0- (3.15)

The superconformal action for the combined system of m = 2k tensor multiplets and
n vector multiplets contains the CS-term induced by (B.7) and the generalization of the
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vector action (B.J) to the extended range of indices. Some extra terms are necessary to
complete it to an invariant action: we need mass terms and/or Yukawa coupling for the
fermions at O(g), and a scalar potential at O(g?). We thus find the following action:

Lvecftensor: < 4H,LILI/H“VJ I¢¢J _ _DaO_IDaO_J _|_ YIyl]J) KCTJI?

1 g
+ —169 6“V)\p QMNB% (OAB[])Y, + QQt[JNAg\F[;{, + gtleAg\Bg,) —
1
= 578" CLik A, (F K+ fra’ ALAS (——gFK 19" fun A Aﬁ))—

1
86“”’\”UQMNUK tra™ ALALAS <——9FK TOQQfHLKAfA£> -

1. -7 w15 5 R
+ <—§11/JI’Y HIE = S i) fWYf) Crig +

L. -7.J K _L M M
+igiieto (t[ﬁ] Criki — ik CJTIJE)_

1
— §g20KC’KMNtIZ o ULtJPNUJJP (3.16)
To check the supersymmetry of this action, one needs all the relations between the various
tensors given above. Another useful identity implied by the previous definitions is
M — .
t(ﬁ) Ckiv =~ (KL) “I1JM - (3.17)
The terms in the action containing the fields of the tensor multiplets can also be
obtained from the field equations (R.42)). They are now related to the action as

5svec—tensor

S = ipNQNur, (3.18)

and the remaining bosonic terms can be obtained from comparing with N™ in (2.45). One
may then further check that also the field equations (R.37) and (R.38) follow from this
action.

Note however that the equations of motion for the vector multiplet fields, obtained from
this action, are similar to those given in (B.H), but with the contracted indices running over
the extended range of vector and tensor components. Furthermore, the Aﬁ equation of
motion gets corrected by a term proportional to the self-duality equation for B %

5svecftensor 1 bed J M N
6ACIL - E? + Egga ¢ eAb Ecde tir QMN . (3.19)

]

Finally, we remark that the action (B.1f) is invariant under supersymmetry for the
completely general form (R.39) of the representation matrices () jK

We thus conclude that in order to write down a superconformal action for the vector-
tensor multiplet, we need to introduce another geometrical object, namely a gauge-invariant
anti-symmetric invertible tensor €,75. This symplectic matrix will restrict the number of
tensor multiplets to be even. We can still allow the transformations to have off-diagonal
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terms between vector and tensor multiplets, if we adapt (B.2) to (B.1H). In this way, we
have constructed more general matter couplings than were known so far. Terms of the form
AN F A B did not appear in previous papers. We see that such terms appear generically
in our lagrangian by allowing for these off-diagonal gauge transformations for the tensor
fields. In some cases these may disappear after field redefinitions.

3.3 The hypermultiplet

Until this point, the equations of motion we derived, found their origin in the fact that
we had an open superconformal algebra. The non-closure functions I', together with
their supersymmetric partners AX yielded these equations of motion. We discovered a
hypercomplex scalar manifold M, where I'xyZ was interpreted as an affine connection.

B on a vector bundle and discovered that the

We also needed a G ¢(r, H)-connection wx 4
manifold also admitted a trivial SU(2)-vector bundle.

Now, we will introduce an action to derive the field equations of the hypermultiplet.
An important point to note is that the necessary data for the scalar manifold we had in
the previous section, are not sufficient any more. This is not specific to our setting, but is
a general property of non-linear sigma models.

In such models, the kinetic term for the scalars is multiplied by a scalar-dependent

symmetric tensor gaﬁ(¢)a

5 =5 [ dP2g0(0)0,0°0"° (3.20)

2
in which o and 3 run over the dimensions of the scalar manifold. The tensor g is interpreted
as the metric on the target space M. As the field equations for the scalars should now
be also covariant with respect to coordinate transformations on the target manifold, the
connection on the tangent bundle 7'M should be the Levi-Civita connection. Only in that
particular case, the field equations for the scalars will be covariant. In other words, in
O¢® + -+ - = 0 the Levi-Civita connection on T'M will be used in the covariant box.

To conclude, we will need to introduce a metric on the scalar manifold, in order to be
able to write down an action. This metric will also restrict the possible target spaces for
the theory.

Observe that most steps in this section do not depend on the use of superconformal
symmetry.* Only at the end of section B.3.2, we make explicitly use of the this symmetry.

3.3.1 Without gauged isometries

To start with, we take the non-closure functions I'4 to be proportional to the field equations

for the fermions (4. In other words, we ask

5Shyper

sor = 2C 4578 . (3.21)

10f course, the form of the field equations does reflect the superconformal symmetry.
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In general, the tensor C'4p could be a function of the scalars and bilinears of the
fermions. If we try to construct an action with the above Ansatz, it turns out that the
tensor has to be anti-symmetric in AB and

0CaB
= .22
DxCap =0. (3.23)

This means that the tensor does not depend on the fermions and is covariantly constant.®
This tensor C4p will be used to raise and lower indices according to the NW-SE

convention similar to ;;:

Ay =ABCpy,  AY=0C"BAp, (3.24)
where €7 and CAP for consistency should satisfy

ewe’® =67,  CacCBC =645, (3.25)

We may choose C'4p to be constant. To prove this, we look at the integrability condi-
tion for (B.23)
Ox,Dy]Cap=0= —Q'R,XY[ACCB}C . (3.26)

This implies that the anti-symmetric part of the connection wxap = wx A€Ceop is pure
gauge, and can be chosen to be zero. If we do so, the covariant constancy condition for C 4p
reduces to the equation that C'4p is just constant. For this choice, the connection wx 4p is
symmetric, so the structure group G ¢(r,H) breaks to USp(2r — 2p,2p). The signature is
the signature of d¢op, which is defined as Cap = pACdCB where pAC was given in (2.5§).
However, we will allow C4p also to be non-constant, but covariantly constant.

We now construct the metric on the scalar manifold as

gxy = f{Capei 17 . (3.27)

The above-mentioned requirement that the Levi-Civita connection should be used (as
I'xy?) is satisfied due to (B:23). Indeed, this guarantees that the metric is covariantly
constant, such that the affine connection is the Levi-Civita one. On the other hand we
have seen already that for covariantly constant complex structures we have to use the
Obata connection. Hence, the Levi-Civita and Obata connection should coincide, and this
is obtained from demanding (B.23) using the Obata connection. This makes us conclude
that we can only write down an action for a hyperkéahler scalar manifold.

We can now write down the action for the rigid hypermultiplets. It has the following

form:

1 > 1 B
Shyper = / &z (—igxyaaqxa“qy + Ca®¢? - ZWABoDcAcB<C<D> . (329

This can also easily be seen by using the Batalin-Vilkovisky formalism.

,29,



where the tensor Wapcop can be proven to be completely symmetric in all of its indices
(see appendix ). The field equations derived from this action are

5Shyper B
> = 2C45T"
(5CA AB )
O Shyper -
527@ = gxyAY —204TBuyp?. (3.29)

Also remark that due to the introduction of the metric, the expression of AX simplifies to
_ 1 _
AX =0¢% = (19q" ("RY v aB - ZQXWABCDCACBCCCD- (3.30)

Let us mention that we could also have followed a slightly different route. We could
have introduced the metric gxy first, and shown that the connection I'xy?Z is the Levi-
Civita connection with respect to this metric, as pointed out in the introduction of this
section. Then, the identification of the vielbeins f;% of the tangent bundle TM with the
G {(r,H) ® SU(2) vector bundle would enable us to find a standard antisymmetric tensor
C ® € on the latter bundle. As the metric is covariantly constant, this should be inherited
by C'®e, reflecting the possibility to choose it to be constant. The result of the introduction
of a metric is that the scalar manifold should be hyperkahler.

Conformal invariance. Due to the presence of the metric, the condition for the homo-
thetic Killing vector (R.87) implies that kx is the derivative of a scalar function as in (R.10).
This scalar function x(q) is called the hyperkihler potential [[1] p3, B0]. It determines the

conformal structure, but should be restricted to
3
DxDyx = 59xy - (3.31)
The relation with the homothetic Killing vector is
1
/{?X :6XX, X = gkxkx. (3.32)

Note that this implies that, when y and the complex structures are known, one can compute
the metric with (B.31)), using the formula for the Obata connection (.74).

3.3.2 With gauged isometries
With a metric, the symmetries of section should be isometries, i.e.
@Xk?YI‘F@Yk?X[ =0. (3.33)

This makes the requirement (R.103]) superfluous, but we still have to impose the triholo-
morphicity expressed by either (R.99) or (R.100) or (R.101]).
In order to integrate the equations of motion to an action we have to define (locally)

triples of ‘moment maps’, according to
1
Ox P = —§Jaxyk}/. (3.34)

The integrability condition that makes this possible is the triholomorphic condition.
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In the kinetic terms of the action, the derivatives should now be covariantized with
respect to the new transformations. We are also forced to include some new terms propor-
tional to g and g2

1 - 1 _ _
Sﬁyper = /d5.%' <_§gXY®aqX:Dan + CA@CA - ZWABCDCACBCCCD - (335)
. = i . — i 1
— g 21k fXCav™ + 10t 5 CaCP — 2P Y1) — gzialaJk;(kJX> ,

[where the covariant derivatives © now also include gauge-covariantization proportional to
g as in (R.106)], while the field equations have the same form as in (B:29). Supersymmetry
of the action imposes

kit T xvky = 2f1," PR (3.36)

As only the derivative of P appears in the defining equation (B.34)), one may add an ar-
bitrary constant to P. But that changes the right-hand side of (B.36). One should then
consider whether there is a choice of these coefficients such that (B.36) is satisfied. This
is the question about the center of the algebra, which is discussed in [[2, [3]. For simple
groups there is always a solution.® For abelian theories the constant remains undetermined.
This free constant is the so-called Fayet—Iliopoulos term.

In a conformal invariant theory, the Fayet—Iliopoulos term is not possible. Indeed,
dilatation invariance of the action needs

3PY = kXox PY. (3.37)
Thus, P§* is completely determined [using (B.34) or (R.107)] as (see also [[4])
2
—6P = kX J%y k) = —gka:ZJO‘ZY”Dyk[X . (3.38)

The proof of the invariance of the action under the complete superconformal group, uses
the equation obtained from (P.105) and (B.34):

XD xkY = oY P2 (3.39)

If the moment map Pj* has the value that it takes in the conformal theory, then (B.30) is
satisfied due to (R.95). Indeed, one can multiply that equation with kxk?J%z" Dy and
use (2-100), (B-109) and (R.89). Thus, in the superconformal theory, the moment maps are
determined and there is no further relation to be obeyed, i.e. the Fayet—Iliopoulos terms of
the rigid theories are absent in this case.

To conclude, isometries of the scalar manifold that commute with dilatations,
see (2.109), can be gauged. The resulting theory has an extra symmetry group G, its
algebra is generated by the corresponding Killing vectors.

5We thank Gary Gibbons for a discussion on this subject.
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3.4 Potential

We complete this section with a discussion of the scalar potential for the general matter-
coupled (rigid) superconformal theory. Gathering together our results (B.16) and (B.35)
the total lagrangian describing the most general couplings of vector/tensor multiplets to
hypermultiplets with rigid superconformal symmetry is

Liotal = Lvec—tensor + ‘Chyper . (340)

From this expression the explicit form of the total scalar potential can be read off as

7 1 7 1
V(UI,qX) = UKCTJI}YZYU T + 5920KCKMNtIzMO’IO'LtJPNO'JO'P + 29 g UJ]{?;(]{?JX s
(3.41)

where
iJ
Y C;; KO’
Note that the auxiliary field Y has been eliminated here. Secondly, written as in (B.41]),

the potential does not contain the auxiliary field v any more, but rather its solution of

— P, yYc

it =0. (3.42)

the field equations. This explains the apparent wrong sign in the YéY” J term, and the
field equation made use of the term 2gPy;; Y% in (B.3§). In fact, the first term of (B-41) is
equal to —gPHjYI i,

This potential reflects the general form in supersymmetry that it is the square of the
transformations of the fermions, where the definition of ‘square’ uses the fermion kinetic
terms. The first term is the square of the transformations of the gauginos, the second term
depends on the transformations of the fermionic partners of the antisymmetric tensors, and
the last one is the square of the transformation law of the hyperinos. Note that off-diagonal
terms between the contributions of Y% and the ¢ IZM olo? terms do not survive as these
would be proportional to ¥ Y =0.

The difference between our potential (B.41]) and the one in a rigid limit of [f], is the
generalization to off-diagonal couplings of vectors and tensor multiplets in the first two
terms.

Summarizing, in this section the actions of rigid superconformal vector/tensor-hyper-
multiplet couplings have been constructed. The full answer is (B.4(}). We found that
the existence of an action requires the presence of additional tensorial objects. Table f]
gives an overview of what are the independent objects to know, either to determine the
transformation laws, or to determine the action.

In the next section we generalize our results to the local case.

4. Local superconformal multiplets

We are now ready to perform the last step in our programme, i.e. extend the supersymmetry
to a local conformal supersymmetry. We will make use here of the off-shell 32 + 32 Weyl
multiplet constructed in B3, B3, and in particular of the ‘standard’ Weyl multiplet. In
fact, there exist two Weyl multiplets: the ‘dilaton’ Weyl multiplet and the ‘standard’ Weyl
multiplet. They contain the same gauge fields but differ in their matter fields. We restrict
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ALGEBRA (no action) ACTION

multiplets |objects Def/restriction objects Def/restriction
Vect. f[U]K Jacobi identities Cuir) f[(JHCKL)H =0A
B invertible
D) | tr,ts) = —frotx

Vect. /Tensor Quen | fr" Crnyr=ti Mtk )N Qun
=, )|t = fi, tid? =0

i Qv p=0

invertible and real using p

Hyper fx4 Nijenhuis condition: Clas) DxCap =0
NxyZ =0
DxDyk? = RxwyZk) < Dxkyr +Dyvkxr =0
?ﬁgﬁ; X (kY ovkS = ~3fr kY | PRa | oxPR = —LoxykYa
Ly J* =0 < kX TS kY = 2f1,5Pga
Hyper + X < @ka:%(SyX < X @X'DYXZ%QXY
conformal
Hyper +
conformal + kY’Dykf = %kf
gauged

Table 2: Various matter couplings with or without action. We indicate which are the geometrical
objects that determine the theory and what are the independent constraints. The symmetries of the
objects are already indicated when they appear first. In general, the equations should also be valid
for the theories in the rows below (apart from the fact that ‘hyper+gauging’ and ‘hyper+conformal’
are independent, but both are used in the lowest row). However, the symbol A indicates that these
equations are not to be taken over below. E.g. the moment map Py* itself is completely determined
in the conformal theory, and it should thus not any more be given as an independent quantity. For
the rigid theory without conformal invariance, only constant pieces can be undetermined by the
given equations, and are the Fayet—Iliopoulos terms. On the other hand, the equations indicated
by <« have not to be taken over for the theories with an action, as they are then satisfied due to the
Killing equation or are defined by x.

ourselves here to the standard Weyl multiplet, due to two considerations. First, it turns out
that with the standard Weyl multiplet we already find a local generalization for any rigid
theory. Second, the experience in other similar situations has shown that two different sets
of auxiliary fields for theories with the same rigid limit do not lead to physically different
results. This has e.g. been investigated in full detail for the old minimal, new minimal and
non-minimal set of auxiliary fields for N =1, D =4 in [f5]. We therefore expect that the
couplings to the dilaton Weyl multiplet are only those obtained from the replacement of
the fields of the standard Weyl multiplet by their functions in terms of the dilaton Weyl
multiplet given in [BJ, eq. (3.14)]. Whether the conformal gauge-fixing program will also
be insensitive to the choice of Weyl multiplet, remains to be seen. For instance in [B3], the
connection between the dilaton Weyl multiplet and an inequivalent set of auxiliary fields
for Poincaré supergravity [[f] was discussed.
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Field | # Gauge SU(2) w
Elementary gauge fields

ex® | 9 P 1 -1
by 0 D 1 0
v |12 sU@) 3 0
Lol24 QL 2 -1
Dependent gauge fields

wuab _ M[ab] 1 0
fu® | = Ke 1 1
Lol S 2 :

Matter fields

Tiap) | 10 1 1
D 1 1 2
b% 8 2 %

Table 3: Fields of the standard Weyl multiplet. The symbol # indicates the off-shell degrees of
freedom. The first block contains the (bosonic and fermionic) gauge fields of the superconformal
algebra. The fields in the middle block are dependent gauge fields. In the lower block are the extra
matter fields that appear in the standard Weyl multiplet.

We have listed all the gauge fields and matter fields of the standard Weyl multiplet in
table . For the full details of the standard Weyl multiplet, we refer to [2].

The procedure for extending the rigid superconformal transformation rules for the
various matter multiplets is to introduce covariant derivatives with respect to the super-
conformal symmetries. These derivatives contain the superconformal gauge fields which,
in turn, will also transform to additional matter fields (this is explained in detail in [§2]).

Since in the previous sections we have explained most of the subtleties concerning
the possible geometrical structures, we can be brief here. We will obtain our results in
two steps. First, we require that the local superconformal commutator algebra, as it
is realized on the standard Weyl multiplet (see [B2, eqs. (4.3)(4.6)]) is also realized on
the matter multiplets (with possible additional transformations under which the fields of
the standard Weyl multiplet do not transform, and possibly field equations if the matter
multiplet is on-shell). Note that this local superconformal algebra is a modification of the
rigid superconformal algebra (R.21)), (B.19) where all modifications involve the fields of the
standard Weyl multiplet.

Now we will apply a standard Noether procedure to extend the rigid supersymmetric
actions to a locally supersymmetric one. This will introduce the full complications of

coupling the matter multiplets to conformal supergravity.

,34,



4.1 Vector-tensor multiplet

The local supersymmetry rules are given by

5A£ = %E’ymﬁl — %io—[&/}“,
0Bgy = —vaDyd™ + ig%bt( jf()M oTWE + ™
syl — _ ; lsz] 16 by - Ty 4iUTE(in)—
—%ig%ﬁ <t[ij~—3t(~ ) ol yE 1177 i)
&ZJJ = —iw-ﬁfei— %ilDo— Y”Ie] +ol v-Te + gt( ) IolgKei 4 ol 0,
sol = %iaﬁ. (4.1)

The covariant derivatives are given by
g Pl 7
D,o" =Dyo ——IZZ)H¢ ,

DMJ = (0 —b )a + 9t 5 IAJ K.

D“,llz)il lu,’l,Z)ZI + H1¢ﬂ - 1$01¢L + YZ]I'I,Z)“J _ O'I’}/ . TQ,[)L _

gt(jf() o 0K¢L—01 Z,
7 3 1
Dy = (0 — 2yt o™ ViUl + gt T AR (42)

The covariant curvature ﬁ{:u should be understood as having components (F s Byw) and

_ 1,
Fl, =200, A0 + gf 1" AL AL — by’ + 3 ol P, . (4.3)
The locally superconformal constraints needed to close the algebra are given by the

following extensions of (£:37) and (2:3§) (which are non-zero only for I in the tensor
multiplet range)

g T e
M _ M JviiK CTid K
LY = t(]f() (20’ YR — > ity ) =0,
3 Grook o F R 1. 7 o i
El“’)\ = ;D[MBV/\]M - 5W/\twt(jf<)M (JJHPUK — 80T + 1 1¢J7pU¢K> -

- S&MV[MEW\] (Q)
— 0. (4.4)

Analogously to subsection P.2.2, the full set of constraints could be obtained by varying

these constraints under supersymmetry.
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The action, invariant under local superconformal symmetry, can be obtained by re-
placing the rigid covariant derivatives in (B.16) by the local covariant derivatives (.2
and adding extra terms proportional to gravitinos or matter fields of the Weyl multiplet,
determined by supersymmetry:

_1£$22ften_[< 4H£VHMVJ - Iww‘]_i__ IDCO,J+6D O'IDGO'J—FYIYZJJ)

4 26
—301 ToK <D+ 3 TabT“b> 4ol o H T“b
1. 5 ~5 = 1. -5 .7 = = _= = oz
+ <—§ il 1Y =S i e Y oty TwK—SiafaJwKx> +
1 7- 7o &1 F Rl S5 R oo R o J R
+gafww“<ia%f(+5izDaJwK—Zv-HJwK+2aJv-TwK—80JaKx>—

1 e e . -
——at)! (U‘]H“bK—é%aJaKT“b) —ngwwukaHliJr

6
+1—12 Lol oy (afﬁ“bf( —807 oK T“b) +4—18 iol ol gyyrrAey, HE
s Y+ éw L IRGRTAT ——nmyw TR
s 1A TR — o BTy 9 o sl G -
—1—12#%7“'%%%% ol awwwwm
+% ic UJTZJA’YWM%%’YM +916 0‘70%%7“”\’)%%%] Ciigpt

1
—}—@6_16’“/)‘/)09]\41\[3“ (8)\B —{—QQUJNA)\ —}—gt[pNAﬁB;;) —

_ﬂeflg;u/)\paCIJKA{L <F +fFG’JAFAG <——gFK+ g f KAHAL>>
1
_g —1€MV)\pUQMNtIK tFGNAIAFAG <——gFK—|- g fHLKAHAL>
%—limﬁ?pjaﬁaz (t Mo MC’~~~) +
1 i Ok~ Miry Cwni
Vo o wgl T KL N M 1,
+1_019¢u7“7/’ g oo [t[IJ] ) ]CMF(E_§ JR) Cmit )~

1
29 ololo® UMUNtJ]\A/] tKN Crrq, (4.5)

where the superconformal d’alembertian is defined as

¢! = D*D,o!

= <8a—2ba+w )D o +gt ~IAJD“ K_ @ﬂD“¢T—2UT@ﬁ“X+

1.
+§¢u7u TQ/) + ¢u7u¢l+2f,uuo' __9¢u7ut T;Z)J K (4'6)
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4.2 Hypermultiplet

Imposing the local superconformal algebra we find the following supersymmetry rules:

5qX = iEiCAfz)ziv
o = —1lﬁq file; — —’y Tk fixe — galkz fixe + KX fixn' (4.7)

3

The covariant derivatives are given by

Dug™ = Duqx + i Ch

Dua™ = 0uq™ — bukX = VIFE + g ALK,
D¢t = CA KX fixdl, + —11?(1)(fx¢Z ’Y TES [, + 95 Ulk;(szwu
1
Dyct = 04" + Opq wxp (P 4 Jwu e = 20,1 + g ALt P (48)

Similar to section P.3, requiring closure of the commutator algebra on these transfor-
mation rules yields the equation of motion for the fermions
1 _
Dar = PO + 5Wopp cPTPCE = Sk fxi + 21y - TCA -
— g (ik{F fAVT + iaItIBACB) . (4.9)

The scalar equation of motion can be obtained from varying (JL.9):

~ 1, . 1 1

0D = Si AN e + T e, — 2y Then iy, (4.10)
where

- 8
Aconf — chX o CB,YaCcDanRXYBC + §T2kX +
4 L 1 ~ ~
+ ngX +8ixiCArN ZDXWABCDCACBCCCD
_ Q(QIT/ZUCBUBAJCZ),% _ k}/Jwayhj) +
+ ¢*olo? Dy kX kY (4.11)
and the superconformal d’alembertian is given by
0%~ = DeD¢*
5 1. .
= 0Dq" — 5ba D¢ — SVIE D" + i DU i +
+ 2£0 kN = 20y XK + 40T P, — iy TN —
. 1 _
= G ¢+ wa Do — 59U v ki — Dag” Oy kit A +
+ Doq¥ DG?TS, . (4.12)
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Note that so far we didn’t require the presence of an action. Introducing a metric, the
locally conformal supersymmetric action is given by

e Ligper = —%gxyDaqXD“qY + bt + %DkQ + %T%Q -
- ? 1Cax kX fi +2iCay - TCA - iWABcpfACBECCD -
— gzﬁav“ku + é@w“v - TYLRS i+ %ifmavbwé@qu fix +
2R = i ok — G ok Sk +

+ 5T Ui BNk — AT + G TL?
- g(iofthAéAcB 2 RF AT + o K AT +
+ iy ! Prij — %iwé’yablbgalpuj) +
+ 29V, Pl — %g%fakakJX. (4.13)

No further constraints, other than those given in section P.3]were necessary in this local case.
In particular, the target space is still hypercomplex or, when an action exists, hyperkéahler.
This action leads to the following dynamical equations

5Sﬁonf

#ﬁer =2 CABFCB;nf’

5Sﬁonf B .

ﬁ = gxy (Ag)nf - 2<Arg)nwaBA - i¢27arfonff54) . (414)

The lagrangians ([L.F) and ([.13) are the starting point for obtaining matter couplings to
Poincaré supergravity. This involves a gauge fixing of the local scale and SU(2) symmetries,
which will be studied in a forthcoming paper.

5. Conclusions and discussion

In this paper, we have analysed various multiplets in five spacetime dimensions with N = 2
supersymmetry in a superconformal context. Although we have so far only considered rigid
supersymmetry and superconformal (both rigid and local) supersymmetry, we have found
new couplings. The main emphasis was on the vector-tensor multiplet and on the hyper-
multiplet. Both these multiplets are on-shell and from the closure of the supersymmetry
algebra, one can read off the equations of motion that determine the dynamics of the sys-
tem. These equations of motion do not necessarily follow from an action. The existence of
an action requires extra tensors which are needed to integrate the equations of motion into
an action. In this way we have generalized the work of [BJ] where off-shell hypermultiplets
were considered, leading e.g. to a restricted class of quaternionic-Kéahler manifolds.

For vector-tensor multiplets, we have written down equations of motion with an odd
number of tensor multiplets in the background of an arbitrary number of vector multiplets.
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This is in contrast with formulations based on an action, where an even number of tensor
multiplets is always needed. Even in the case when an action exists, we have found new
couplings where vectors and tensors mix non-trivially due to the off-diagonal structure of
the representation matrices for the gauge group. This introduces new terms in the scalar
potential, such that we have a broader class of models than in the existing literature so
far. We hope that these new potentials lead to interesting new physical applications.

For hypermultiplets, it has been known that the geometry of the scalars is hyperkéhler
for rigid supersymmetry [@] or quaternionic-Kahler for supergravity [@] This was based
on an analysis of the requirements imposed by the existence of an invariant action, and
has been fully proved in [f9]. We have written down equations of motion without the need
of a target space metric (and thus a supersymmetric action), but which only involve a
vielbein and a triplet of integrable complex structures. The resulting geometry is that of
a hypercompler manifold, which is a weakened version of hyperkahler geometry where the
Ricci tensor is antisymmetric and not necessarily zero.

Since the appearance of hypercomplex geometry is somehow new in the physics lit-
erature, we have discussed their properties in appendix B} Group manifolds, e.g. SU(3),
provide examples of hypercomplex geometries that are not hyperkahler, and we have com-
puted the non-vanishing components of the Ricci tensor for hypercomplex group manifolds
in appendix [J. The main condition for a hypermultiplet action to exist, is the presence
of a target space metric. In that case, the target space becomes hyperkahler. Our results
then coincide with the literature.

The results of our analysis, both with and without actions, are summarized in table [}
where we indicate the various geometrical tensors and the restrictions they are subject
to. The resulting scalar potential is displayed in section B.4 After the analysis for rigid
conformal supersymmetry, we have extended our results to local conformal supersymme-
try. However, it turns out that the extra constraints that are necessary for allowing rigid
conformal symmetry are also sufficient for the extension to local conformal supersymmetry.
For this formulation, we have used the previously obtained results on the Weyl multiplet
in five dimensions B2, BJ].

Note that in constructing these superconformal theories, we have allowed kinetic terms
for the scalars with arbitrary signature. This will be important for the conformal gauge-
fixing programme, where the compensating scalars should have negative kinetic terms in
order that the full theory has positive kinetic energy. The couplings of superconformal
matter to the Weyl multiplet are gauge equivalent to matter-coupled Poincaré supergravi-
ties. This involves a partial gauge fixing, which we will investigate in a forthcoming paper,
and which has been considered for some cases in [B3, BJ]. This should lead to actions that
can be compared with those in [, P].

However, not all our results can fall in the theories of the present literature. We
mentioned already above the extension to off-diagonal vector-tensor couplings. The other
extension is due to not requiring the existence of an action.

From a string theory viewpoint, this is quite a natural thing to do. In fact, string
theory does not lead to an action, but it leads to field equations, which in most cases can
be integrated to an action. We should point out that there are also other techniques for
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constructing matter couplings that do not lead to an action. In many cases, the presence
of self-dual antisymmetric tensor fields makes the construction of actions non-trivial. The
gaugings of N = 8 supergravity in 5 dimensions require in some cases an odd number of
antisymmetric tensors, which prohibits the construction of an action [p0]. Its reduction to
N = 2 theories should be in the class of the theories of this paper that are not based on
an action.

This interesting aspect of our paper is not confined to five spacetime dimensions. A
similar analysis can be done in other dimensions as well. The results were obtained by
emphasizing the distinction between requirements from the algebra and requirements from
action invariance, which is especially interesting for multiplets with an ‘open’ algebra, where
equations of motions are generated from the anticommutator of two supersymmetries. e.g.
the hypercomplex manifolds can be obtained in the same way for D = 4 and D = 6 theories
with 8 supersymmetries.

We conclude by remarking that it is likely that our newly found matter-couplings
will survive after gauge-fixing the local superconformal symmetry to N = 2 Poincaré
supergravity. It will be of interest to see the consequences of our results for studying
domain walls, renormalization group flows in the context of the AdS/CFT correspondence,

and for finding a supersymmetric Randall-Sundrum scenario.
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A. The linear multiplet

The significance of the linear multiplet appears when we introduce an action for the vector
multiplet, see (B-3) in section [J. This action contains a constant totally symmetric tensor
Cryk- In section B we saw that this tensor characterizes a special geometry. The linear
multiplet is related to this vector multiplet action in the sense that the equations of mo-
tion (B.5) that follow from the action (B.3) transform precisely as a linear multiplet in the
adjoint representation.

The degrees of freedom of the linear multiplet are given in table [ We will consider a
linear multiplet in the background of an off-shell (non-abelian) vector multiplet. We take
the fields of the linear multiplet in an arbitrary representation of dimension m. The rigid
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conformal supersymmetry transformation rules for a linear multiplet in the background of
a Yang-Mills multiplet are given by

SLIM — jelighM

. 1. Iy 1. ] 1 - .
5<,olM = —§1ZDL”Mej ~3 17“E0]LueZ + §NMEZ + §galt1NML”Nej + 3L”M77j,

1. 1 _ 1 . ; _
5Eé\4 = —5 i efyab'Db(pM — §g6’yat]NMO'I<pN + §g€(ZtINM'Ya¢J)IL£}[ - 277'7(1()0M s
1 1 : ; 3
SNM = §EZD<PM +3 igelt My LY + > i (A1)

The superconformal algebra closes provided the following constraint is satisfied
Do EM + gt ™ (YVILY + 197N +0'NY) = 0. (A.2)

Note that the index I refers to the adjoint representation of the vector multiplet. To
obtain the multiplet of equations of motion of the vector multiplet one should also take for
M the adjoint representation in which case all £ matrices become structure constants.

B. Hypercomplex manifolds

In this appendix we will present the essential properties of hypercomplex manifolds, and
show the relation with hyperkahler and quaternionic (Kéhler) manifolds. We show how
properties of the Nijenhuis tensor determine whether suitable connections for these ge-
ometries can be defined. We give the curvature relations, and finally the properties of
symmetry transformations of these manifolds.

Hypercomplex manifolds were introduced in [B1]. A very thorough paper on the subject
is [R9]. Examples of homogeneous hypercomplex manifolds that are not hyperkahler, can
be found in [B], B4], and are further discussed in section [J. Non-compact homogeneous
manifolds are dealt with in [BH]. Various aspects have been treated in two workshops with
mathematicians and physicists [@, E] To prepare this appendix, we used extensively [,
and some parts of this presentation use original methods.

B.1 The family of quaternionic-like manifolds

Let V be a real vector space of dimension 47, whose coordinates we indicate as ¢ (with
X =1,...,4r). We define a hypercomplezx structure H on V to be a triple of complex
structures J, (with o = 1,2, 3) which realize the algebra of quaternions,

JOJP = —6%P 1y, 4+ P17 (B.1)

A quaternionic structure is the space of linear combinations a,J® with a, real numbers.
In this case the 3-dimensional space of complex structures is globally defined, but the
individual complex structures do not have to be globally defined.

Let M be a 4r dimensional manifold. An almost hypercomplex manifold or almost
quaternionic manifold is defined as a manifold M with a field of hypercomplex or quater-
nionic structures.
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no preserved metric | with a preserved metric
no SU(2) hypercomplex hyperkahler
curvature G {(r,H) USp(2r)
non-zero SU(2) quaternionic quaternionic-Kahler
curvature SU(2) - G £4(r,H) SU(2) - USp(2r)

Table 4: Quaternionic-like manifolds. These are the manifolds that have a quaternionic structure
satisfying (B.1]) and (B.9). The holonomy group is indicated. For the right column the metric may
give another real form as e.g. USp(2,2(r — 1)).

The ‘almost’ disappears under one extra condition. Different terminologies are used to
express this condition. Sometimes it is said that the structure should be 1-integrable. The
same condition is also expressed as the statement that the structure should be covariantly
constant using some connections, and it is also sometimes expressed as the ‘preservation
of the structure’ using that connection. The connection” here should be a symmetric (i.e.
‘torsionless’) connection I Xy)Z and possibly an SU(2) connection wx®. The condition is

0= @XJQYZ = 8xJayZ — FXYWJQWZ + PXWZJQYW + QEQ”B’YWXBJWYZ . (B.2)
If the SU(2) connection has non-vanishing curvature, the manifold is called quaternionic.®

If the condition (B.Z) holds with vanishing SU(2) connection, i.e.
0=DxJ%? =0xJ" —Txy"VIw? +Txw?J%"W, (B.3)
then the manifold is hypercomplex. If there is a hermitian metric, i.e. a metric such that
J*x%gzv = —J%7g9zx (B.4)

and if this metric is preserved using the connection I' (i.e. if I is the Levi-Civita connection
of this metric) then the hypercomplex and quaternionic manifolds are respectively promoted
to hyperkihler and quaternionic-K#hler manifolds. Hence this gives rise to the scheme? of
table [

We will show in section B.4 that the spaces in the upper row have a Ricci tensor that
is antisymmetric, and those in the right column have a Ricci tensor that is symmetric (and
Einstein). It follows then that the hyperkdhler manifolds are Ricci-flat. The restriction
of holonomy group when one goes to the right column, just follows from the fact that the
presence of a metric restricts the holonomy group further to a subgroup of O(4r).10

"The word ‘connection’ is by mathematicians mostly used as the derivative including the ‘connection
coefficients’. We use here ‘connection’ as a word denoting these coefficients, i.e. gauge fields.

8For r = 1 there are subtleties in the definition, to which we will return below.

9The table is essentially taken over from [@], where there is also the terminology unimodular hyper-
complex or unimodular quaternionic if the G £(r) is reduced to S £(r).

0The dot notation means that it is the product up to a common factor in both groups that does not
contribute. In fact, one considers e.g. SU(2) and USp(2r) on coset elements as working one from the left,

and the other from the right. Then if both are —1, they do not contribute. Thus: SU(2) - USp(2r) =
SU(2)xUSp(2r)
s :
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A theorem of Swann [71]] shows that all quaternionic-Kihler manifolds have a cor-
responding hyperkéhler manifold which admit a quaternionically extended homothety [a
homothety extended to an SU(2) vector as in (R.8)] and which has three complex struc-
tures that rotate under an isometric SU(2) action. It has been shown in [B0] that this can
be implemented in superconformal tensor calculus to construct the actions of hypermulti-
plets in any quaternionic-Kéahler manifold from a hyperkéhler cone. Similarly, it has been
proven in [Bg, BY that any quaternionic manifold is related to a hypercomplex manifold.

Locally there is a vielbein fif (withi = 1,2 and A = 1,...,r) with reality conditions as
in (R.61]). In supersymmetry (and thus in this paper), we always start from these vielbeins
and the integrability condition can be expressed as

4 . " . .
Ox fir — T4y 1+ filox' + fPwxp? = 0. (B.5)
B.2 Conventions for curvatures and lemmas

We start with the notations for curvatures. The main conventions for target space curva-
ture, fermion reparametrization curvature and SU(2) curvature are

Rxyz" = 20xTy)z" + 2Ty x" Ty 7",

A _ A A C

Rxyp” = 20xwyip” + 2wix|c| wy)B"
Rxvi = 20xwyyd + 2wix e wyi® - (B.6)

The SU(2) curvature and connection wx;/ are hermitian traceless,!! and one can make the
transition to triplet indices o = 1,2, 3 by using the sigma matrices

Rxyi’ = 1(0®)/Rxy®,
1 . .
RXYQ = —5 1 (O’a)i]RXYiJ = 28[wa]a + 260457(4))(6(4})/7 . (B7)
This transition between doublet and triplet notation is valid for any triplet object as
e.g. the complex structures. It is useful to know the translation of the inner product:
RiIR; = —2R*R.
The curvatures by definition all satisfy the Bianchi identities that say that they are
closed 2-forms, e.g.
@[XRyz}VW - 0 . (Bg)
Furthermore, due to the torsionless (symmetric) connection, also the cyclicity property
holds.
Rxyz"V + Rzxy" + Ryzx" =0. (B.9)

The Ricci tensor is defined as
Rxy = Rzxy?. (B.10)

This is not necessarily symmetric. When I' is the Levi-Civita connection of a metric, then
one can raise and lower indices, Rwzxy = Rxywyz and the Ricci tensor is symmetric.
Then one defines the scalar curvature as R = ¢~¥ Rxy.

"' This means symmetric if the indices are put at equal height using the raising or lowering tensor €,
(NW-SE convention).
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We now present three lemmas that are useful in connecting scalar manifold indices with
G ¢(r,H) indices. These lemmas are used in section P.3 and will simplify further derivations
in this appendix.

Lemma 1. If a matriz MxY satisfies
[T, M) = 27 JPm7 (B.11)
for some numbers m”, then the latter are given by
drm® =Tr (J*M), (B.12)
and the matriz can be written as
M=-m*J*+ N, [N,J*] =0. (B.13)
A matriz M of this type is said to ‘normalize the hypercomplex structure’.

Proof. The first statement is proven by taking the trace of (B.I1]) with J 9 Inserting this

value of m® in (B.13), it is obvious that the remainder N commutes with the complex
structures. n

Lemma 2. If a matriz MxY commutes with the complex structures, then it can be writ-
ten as
MxY = MABfid sl . (B.14)

and vice-versa, any Ma® matriz can be transformed with ([B.1j) to a matriz commuting
with the complex structures.

Proof. The vice-versa statement is easy. For the other direction, one replaces J* with J;7 as
in (2.71]). Then multiply this equation with f ]'),(4 fEB and consider the traceless part in AB.
|

Lemma 3. If a tensor R[XY]ZW satisfies the cyclicity condition (B.4) and commutes with
the complex structures,

RXYZVJO‘VW — JaZVRXYVW =0, (B.15)

it can be written in terms of a tensor Wapc®? that is symmetric in its lower indices. If
Rxyz% = 0, then also W is traceless.

Proof. By the previous theorem, we can write

A 1 A
Rxyw? = [ift fRxva® Rxyal = §fﬂ/fzzBRXYWZ- (B.16)

We can change all indices to tangent indices, defining

Rijopp™ = f2:/)pRxys” = —Rjipcs™ . (B.17)
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The cyclicity property of R can be used to obtain
0= f5'Rwxv? = f[ifRWX]BA : (B.18)
We multiply this with f%fgjfl%, leading to
Ryjeop™ + Rijope™ + 2Rk prc” = 0. (B.19)

The symmetric part in (jk) of this equation implies that Rz apc” = 0 [multiply the
equation by 3, and subtract both cyclicity rotated terms in (CDFE)]. Thus we find

1
Rijcpp® = —5eiiWops™, (B.20)

with

y 1 ..
Weps™ = e f;0fpRxys® = §€”fféf5)szgf$kRXYZW- (B.21)

Now we prove that W is completely symmetric in the lower indices. The definition imme-
diately implies symmetry in the first two. The [jk] antisymmetric part of (B.19)) gives

Weep™ + Wpep™ — 2Wepe? = 0. (B.22)

Antisymmetrizing this in two of the indices gives the desired result.
Finally, it is obvious from (B.21]) that the tracelessness of R and W are equivalent. m
The full result for such a curvature tensor is thus

1 .
Rxyw? = —3 e 117 S Wanc? . (B.23)

B.3 The connections

In the definition of hypercomplex and quaternionic manifolds, appear the affine connection
I'xy? and an SU(2) connection wx®. In this subsection we will show how they can be

obtained. The crucial ingredient is the Nijenhuis tensor.

Nijenhuis tensor. A Nijenhuis tensor N;@Z is defined for any combination of two com-
plex structures, but we will use only the ‘diagonal’ Nijenhuis tensor (normalization for later

convenience)
1
Nxy? = EJO‘XW(?[WJO‘HZ — (X «Y)=—Nyx%. (B.24)
It satisfies a useful relation
Nxy? = J*xX Ny ? J 57, (B.25)

from which one can deduce that it is traceless.
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Obata connection and hypercomplex manifolds. The torsionless Obata connec-
tion [6]] is defined as

FOb Z

xy~ = <28(XJay)W + €aﬂnyﬁ(XUa|U‘J7y)W) JQWZ. (B.26)

1
6
First, note that if a manifold is hypercomplex, i.e. if (B.3) is satisfied, then by inserting the
expression for dJ from that equation in the right hand side of (B.26)), one finds that the
affine connection of the hypercomplex manifold should be the Obata connection, I' = I'°P.
One may thus answer the question whether an almost hypercomplex manifold [i.e. with
three matrices satisfying (B.J))], defines a hypercomplex manifold [i.e. satisfies (B.3])]. As
we now know that the affine connection in (B-3) should be (B:26), this can just be checked.

For that purpose, the following equation is useful:
OxJy7” — <FObXYW + NXYW) Jw? + (FObXWZ + NXWZ) JyW =0.  (B27)

It shows that any hypercomplex structure can be given a torsionful connection such that
the complex structures are covariantly constant. The condition for a hypercomplex man-
ifold is thus that this connection is torsionless, i.e. that the Nijenhuis tensor vanishes. In
conclusion, a hypercomplex manifold consists of the following data: a manifold M, with a
hypercomplex structure with vanishing Nijenhuis tensor. In the main text, we only use the
Obata connection, and we thus have I' = T'OP.

Oproiu connection and quaternionic manifolds. For the quaternionic manifolds, the
affine connection and SU(2) connection can not be uniquely defined. Indeed, one can easily
check that (B.2) is left invariant when we change these two connections simultaneously
using an arbitrary vector &y as

Txy? — Txy? + S ew, wx® — wx®+ JxVew, (B.28)

where S is the tensor
Sy = 200500y — 22X T WY (B.29)

which satisfies the relation
S%(V‘{/JQVY — JQWVS%(‘}/ = 26a57JﬁZXJ’YWY. (B.30)
An invariant SU(2) connection is

1 2 1
Oox* =wx*+ gJaXYJBYZWZB = gwxa - ggaﬁnyBXYwa‘ (B.31)

If we use (B.J) in the expression for the Nijenhuis tensor, (B-24)), we find that quater-
nionic manifolds do not have a vanishing Nijenhuis tensor, but the latter should satisfy

Nxy? = —J%x%@v". (B.32)
This condition can be solved for @. We find

(1—2r)0x® = NxyZJzY. (B.33)
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Thus the condition for an almost quaternionic manifold to be quaternionic is that the
Nijenhuis tensor satisfies

(1-27r)Nxy”? = =J%x" Nyp VIV . (B.34)
On the other hand, one may also use (B.2) in the expression for the Obata connec-
tion (B.2¢). Then we find that the affine connection for the quaternionic manifolds is
given by

1
Pxy? =TPxy? = J%(x 7wy = 25550 Vv, (B.35)

which exhibits the transformation (B.2).

One can take a gauge choice for the invariance. A convenient choice is to impose
Jayzwza =0. (B.36)

With this choice @x® = wx®. The affine connection in (B.35) simplifies, and this expression
is called the Oproiu connection [P(]

Op._. Z _ 1Ob__Z z
[Pxy? =TPxy” = J% x“wyy®

=I%xyZ + N%y — I Zwx®. (B.37)

The last expression shows that the Oproiu connection, which up to here was only proven to
be necessary for solving (B.2), gives indeed rise to covariantly constant complex structures
under the condition (B.33). Indeed, the first two terms give already a (torsionful) connec-
tion that gives rise to a covariantly constant hypercomplex structure, see (B.27), and the
last term cancels the SU(2) connection. The condition (B.32) is now the condition that
the connection I'OP is torsionless.

In conclusion, a quaternionic manifold consists of the following data: a manifold M,

with a hypercomplex structure with Nijenhuis tensor satisfying (B-34).

Levi-Civita connection and hyperkihler or quaternionic-Kahler manifolds. For
hyperkéahler manifolds, the Obata connection should coincide with the Levi-Civita connec-
tion of a metric. For quaternionic-K&hler manifolds, the connection that preserves the
metric can be one of the equivalence class defined from the Oproiu connection by a trans-
formation (B.2§).

Final note on connections. Note that for a given M and H, it is possible to find
different connections which are all compatible with the hypercomplex structures. The
resulting curvatures are then also different, which implies different (restricted) holonomy
groups. An example on group manifolds, where we use a torsionful and a torsionless
connection, will follow in section [J. Other examples can be found in [P1], p3], which
discuss ‘HKT’ manifolds, hypercomplex manifolds with torsion.
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B.4 Curvature relations

Splitting according to holonomy. There are two interesting possibilities of splitting
the curvature on quaternionic-like manifolds. First of all, the integrability condition of ([B.5)
yields that the total curvature on the manifold is the sum of the SU(2) curvature and the
G {(r,H) curvature which shows that the (restricted) holonomy splits in these two factors:

Rxyw? = RSV@ yyy? + ROCOH) oy 2 (B.38)
= —JW? Rxy® + Lw? AP Rxy?, with Lw? 4B = fA 1P

The matrices L4Z and J¢ commute and their mutual trace vanishes
JaXYLYZAB — LXYABJQYZ, JaZYLYZAB — 0 . (B39>

For hypercomplex (or hyperkahler) manifolds, the SU(2) curvature vanishes. Then the
Riemann tensor commutes with the complex structures and using the cyclicity, one may
use lemmas P and f{ to write

Rxyw? = — fXEUf f 12 Wapc® . (B.40)

This W is symmetric in its lower indices. The Ricci tensor is then

1
Rxy = €wa fi°Wapc™ = —Ryx . (B.41)

Thus the Ricci tensor for hypercomplex manifolds is antisymmetric. In general, the an-
tisymmetric part can be traced back to the curvature of the U(1) part in G{(r,H) =
S{(r,H) x U(1). Indeed, using the cyclicity condition:

1
Rixy) = RZ[XY}Z = —§RXYZZ = —Rg(;) , R%P =Rxyat. (B.42)

Splitting in Ricci and Weyl curvature. The separate terms in (B-38) for quaternionic
manifolds do not satisfy the cyclicity condition, and thus are not bona-fide curvatures. We
will now discuss another splitting

R = RRiCXYWZ + R(W)XYWZ . (B.43)

Both terms will separately satisfy the cyclicity condition. The first part only depends on
the Ricci tensor of the full curvature, and is called the ‘Ricci part’. The Ricci tensor of the
second part will be zero, and this part will be called the ‘ Weyl part’ [B. We will prove
that the second part commutes with the complex structures. The lemmas of section
then imply that the second part can be written in terms of a tensor W4pc”, symmetric in
the lower indices and traceless. This tensor appears in supersymmetric theories, which is
another reason for considering this construction. The case r = 1 needs a separate treatment

which will be discussed afterwards.
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To define the splitting (B.43)), we define the first term as a function of the Ricci tensor,
and R™W) is just defined as the remainder. The definition of R®¢ makes again use of the
tensor S in (B.29):

RRiCXYZW = 2S%¥BY]V7

1 1
Bxy = —R ——— Ty Rzw +

4r+1
Here, II projects bilinear forms onto hermitian ones, i.e.
1
HXYZW = Z (5XZ5YW + JaXZJayW) . (B.45)
The Ricci part satisfies several properties that can be checked by a straightforward calcu-
lation:

1. The Ricci tensor of RRi€ ig just Rxy.

2. The cyclicity property (B.9).

3. Considered as a matrix in its last two indices, this matrix normalizes the hypercom-
plex structure (see lemma ).

Especially to prove the last one, the property (B.30) can be used (multiplying it with Byx
and antisymmetrizing in [ZU]). The relation is explicitly

JozZW RRICXYWV _ RRICXYZW JaWV _ QEQB'YJQZV RRchy'y’

. 1 .
with RRlcxya = EJQWZRRICXYZW = QJQ[XZBy}Z . (B.46)

The important information is now that the full curvature also satisfies these 3 properties.
The latter one is the integrability property of (B.9):

0=29xDy /2" = Rxyw" J*2" — Rxy "V Jow"Y = 22" Rxy T,V . (B.AT)
As in general for matrices normalizing the complex structure, we can also express R xy® as
RxyzVJ%w?Z = 4r Ry - (B.48)

This leads to properties of the Weyl part of the curvature. First of all, it implies
that this part is Ricci-flat. Secondly it also satisfies the cyclicity property. Third, it also
normalizes the hypercomplex structure, defining some Rg}@a. We will now prove that the
latter is zero for r > 1.

The expression for this tensor satisfies a property that can be derived, starting from its
definition, by first using the cyclicity of R™W), then the equation saying that it normalizes

the hypercomplex structure, and finally that it is Ricci-flat

ng\Q = ZJO‘UVR(W)XYVU = —§JQUVR(W)V[XY}U
o w
_ _eomigl) | 1y (B.49)
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Multiplying with J®¥ and antisymmetrizing leads to

a Yp(W)a _
J % RX}Y =0. (B.50)

Secondly, multiplying (B:49) with J°z%XJ%Y, and using (B.49) again for multiplying the
complex structures at the right-hand side, leads to

JOxZ I VROV — W or Ty ZYRODT = 0. (B.51)

Finally, multiplying (B-49) with £2%¢.J% 7Y leads to

RW =0, it r>1. (B.52)
Therefore RW) xy4Y is a tensor that satisfies all conditions of lemma , and we can thus
write

. 1 5
Rxyz" = RMexy WV — 5 Lei 137 1 fioWasc® . (B.53)
For hypercomplex manifolds, we found that the full curvature can be written in terms of
a tensor WapcP, see (B.40), which is symmetric in the lower indices, but not necessarily
traceless. One can straightforwardly compute the corresponding W, and find that this is

its traceless part, the trace determining the Ricci tensor:

3 1 A e
Wapc” = Wapc? — m5€4WBC)EE, Rxy = —Rxya® = §€z‘jfof1]/BWABCC-
(B.54)

The 1-dimensional case. As
G/(1,H) =S¢(1,H) x U(1) = SU(2) x U(1), (B.55)

we have now two SU(2) factors in the full holonomy group. This can be written explicitly

by splitting L in (B.3§) in a traceless and trace part:

1 1
LxY A8 = R (e BT xY + 55}25}2 . (B.56)

This leads to the r = 1 form of (B.39):
Rxyw? = —J W RIS — T W RS + 55[/732(;) ; (B.57)

where for emphasizing the symmetry, we indicate the original complex structures as J T x Y.

We saw that for » = 1 we could not perform all steps to get to the decomposition (B.53).
However, some authors define quaternionic and quaternionic-Kéhler for » = 1 as a more
restricted class of manifolds such that this decomposition is still valid [p4]. For quaternionic-
Kahler manifolds, the definition that is taken in general leads for = 1 to the manifolds with
holonomy SU(2) x USp(2), which is just SO(4). Thus with this definition all 4-dimensional
riemannian manifolds would be quaternionic-Kahler. Therefore a further restriction is
imposed. This further restriction is also natural in supergravity, as it is equivalent to a
constraint that follows from requiring invariance of the supergravity action.
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In general, as R™W) normalizes the hypercomplex structure, we can by lemma f] and
lemma [ write

RW) 5y, = —R@"‘J“zw + R@AB Lz 4B = RWF 5y W + RW= 4y, (B.58)
We impose
W)
R =0, (B.59)

as part of the definition of quaternionic manifolds with r = 1. This is thus the equation
that is automatically valid for » > 1. Using lemma B, this implies that (B-53) is valid for
all quaternionic manifolds.

In the 1-dimensional case, we can see that a possible metric is already fixed up to a
multiplicative function. Indeed, the C'4p that is used in (B.27) can only be proportional to
eap. Therefore, it is said that there is a conformal metric, i.e. a metric determined up to
a (local) scale function A(q):

gxy = Nq) fid f1Peijean . (B.60)

One can check that this metric is hermitian for any A(q), i.e. J%xy = J®xZgzy is anti-
symmetric. The remaining question is whether this metric is covariantly constant, which
boils down to the covariant constancy of C4p. This condition can be simplified using the
Schouten identity:

DxCap = OxCap + 2wx(a“Cloyp = OxCap +wxcCap = cap (OxMa) + wxcA(q)) -
(B.61)

C is a total

We can choose a function A(g) such that C' is covariantly constant iff wxc
derivative, i.e. if the U(1) curvature vanishes. Thus in the 1-dimensional case hypercomplex
manifolds become hyperkéhler, and quaternionic manifolds become quaternionic-Kahler if
and only if the U(1) factor in the curvature part G¢(1, H) vanishes.

The curvature of Quaternionic-Kahler manifolds. In quaternionic-Kéahler mani-
folds, the affine connection is the Levi-Civita connection of a metric. Therefore, the Ricci
tensor is symmetric. As we have already proven that in the hypercomplex case the sym-
metric part vanishes, hyperkéahler manifolds have vanishing Ricci tensor. Now we will prove
that the quaternionic-Kéhler spaces are Einstein, and that moreover the SU(2) curvatures
are proportional to the complex structures with a proportionality factor that is dependent
on the scalar curvature.
We start again from the integrability property (B.47). Multiplying with J%y~ gives

Ry 76 — P Ryy 2V IPw ™ + 7%,V RxywV 700 —

—2eRD 4 26%RE I8, X —oaRYy T K = 0. (B.62)

The second and third term can be rewritten

Rxyw" I°v™ = —Rywx" v~ — RwxyV oy~
= —Rywx"J°vX + RyxwV %%,
2Rxyw" Joyv* = —4rR{y . (B.63)
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In the first line, the cyclicity property of the Riemann tensor is used. Then, the symmetry
in interchanging the first two and last two indices (here we use that the curvature originates
from a Levi-Civita connection) and finally interchanging the indices on the last complex
structure, using its antisymmetry (Hermiticity of the metric). This leads to

Ry 76% 4+ &°902(r — )RY , — 2(r — )Ry J@ 2% + 209 R7,J° % = 0. (B.64)
Multiplying with 60 gives
2
Ryz=—3(r+ 2)J0 ,XRE . (B.65)

On the other hand, multiplying (B.64) with 7 gives only a non-trivial result for r # 1,
in which case we find

for r>1:  2R$, =PI YRY,. (B.66)

We impose the same equation for r = 1. We will connect this equation to another require-
ment below.
By replacing %7 J%yX by —(JYJ7)yX — 5557 we get

Ry = —éJaXZJﬁZVR‘;Y = ﬁJ‘J‘XzRZy. (B.67)

We also have 1
Jx?RyyP = e Rxy Y — maaﬁny . (B.68)
The final step is obtained by using (B.47) once more. Now multiply this equation with

By JBYX J7,U "and use for the contraction of the Riemann curvature tensor with J&YX

that we may interchange pairs of indices such that (B.4§) can be used. Then everywhere
appears JRP, for which we can use (B.6). This leads to the equation expressing that
the manifold is Einstein:

1
= — . B.
Rxy . gxy R (B.69)

With (B.67), the SU(2) curvature is proportional to the complex structure:

1 1
Ly = =vJ% —— R, B.
XY 2VJXYa v 4r(r+2)R (B.70)

The Einstein property drastically simplifies the expression for B in (B.44) to
1
Bxy = 7voxy - (B.71)

The Ricci part of the curvature then becomes proportional to the curvature of a quater-
nionic projective space of the same dimension:

n 1 1 « «Q 1 « @ 1 5 a A
<RHP )XYWZ B §gz[XgY]W+§JXYJzW_§JZ[XJY]W - §JXYJZW+L[ZW] BL[XY}AB'

(B.72)
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The full curvature decomposition is then

n 1
Rxywz = v(R™" ) xywz + §LZWABWABCDLXYCD ; (B.73)

with Wapcop completely symmetric. The constraint appearing in supergravity fixes the
value of v to —1. The quaternionic-Kéahler manifolds appearing in supergravity thus have
negative scalar curvature, and this implies that all such manifolds that have at least one
isometry are non-compact.

Finally, we should still comment on the extra constraint (B.66) for r = 1. In the math-
ematics literature [P4] the extra constraint is that the quaternionic structure annihilates
the curvature tensor, which is the vanishing of

(J* R)xywz = JxV Ryywz + JY Rxvwz + J*2" Rxywv + J°w" Rxyvz

= P (R I + Rw Iy ) (B.74)

where the second expression is obtained using once more (B.47). We have proven that (B.66))
was sufficient extra input to have RS- proportional to J§, implying J*- R = 0. Vice
versa: multiplying (B.74) with £2%¢J¢y 7 leads to (B.6) if J* - R = 0. Thus indeed the
vanishing of (B.74)) is an equivalent condition that can be imposed for » = 1 and that is
automatically satisfied for r > 1.

B.5 Symmetries

Symmetries of manifolds are most known as isometries for riemannian manifolds (i.e. when

there is a metric). They are transformations 6¢~ = ki (¢)A!, where A! are infinitesimal

parameters. They are determined by the Killing equation 2

D(xkyyr =0, kxr = gxvk'r. (B.75)

This definition can only be used when there is a metric. However, there is a weaker equation
that can be used for defining symmetries also in the absence of a metric, but when parallel
transport is defined. Indeed, the Killing equation implies that

~Ryzx"kwr = DyDzkxr — D z0vkxr = DyDzkxs + D7D xkyr . (B.76)

Using the cyclicity condition on the left hand side to write

(Ryzx" — Rzxy"V — Rxv7") , (B.77)

DO | —

w
Ryzx" =

we obtain

@ngkﬁlz = RXWYZ]{:}/V . (B.78)

This equation does not need a metric any more. We will use it as definition of symmetries
when there is no metric available. We will see that it leads to the group structure that is
known from the riemannian case.

12See also ‘conformal Killing vectors’ in section EI
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Of course, we will require also that the symmetries respect the quaternionic structure.
This is the statement that the vector k‘f normalizes the quaternionic structure:

EkIJaXY = k;,Z(?ZJ“XY — (axk‘lz) JaZY + JQXZ (azk?}/) = b?ﬁJﬁXY, (B.79)

for some functions b?ﬁ (¢). This by is antisymmetric, as can be seen by multiplying the

equation with J7yX.

Thus we define symmetries in quaternionic-like manifolds as those 6g~ = k:;((q)AI,

such that the vectors k¥ satisfy (B-73) and (B.79).

We first consider (B.79). One can add an affine torsionless connection to the deriva-
tives, because they cancel. As a total covariant derivative on J vanishes, we add in case
of quaternionic manifolds the SU(2) connection to the first derivative. This addition is of
the form of the right-hand side. Thus defining P; by b?ﬁ - 250‘5%1)(7]{:?( = —250‘57VP}Y,
the remaining statement is that there is a P?(g) (possibly zero) such that!?

JaXZ (szﬁ}/) — (@)(k‘lz) JaZY = —28aﬁ7J6XYl/P;/. (B.80)

The equation now takes on the form of (B.11]) in lemma [[] Thus, using this lemma, as well
as lemma [, we have
@Xk:}/ = I/JQXY PIO{—FLXYABUBA. (B.81)

trg is the matrix that we saw in the fermion gauge transformation law (R.94). The
rule (B:I) gives an expression for Py, which is called the moment map:

drvPf = —J%Y (Dyk{). (B.82)
Using the second equation, (B.78) we now find
RZWXY]C}/V = @ngk}/ = I/JQXY(szla) + LXYAB (ta[BA) . (B.83)

Using the curvature decomposition (B.3§) and projecting onto the complex structures and
L, we find two equations

szak}/[/ = —I/CDZPIO‘ s RZWBA]{}/V = @Zt[BA . (B.84)
The algebra that the vectors k‘f define is
2k Dy k) + 1 ki =0, (B.85)

where f;;% are structure constants. Multiplying this relation with J*x%®z, and us-

ing (B.79), and (B.89) gives

2J°x 7 (D 2k Dy k) + 2J°x7 Rgwy X kjiky| —4rvfr," PR =0. (B.86)

13Here we introduce in fact vP. The factor v is included for agreement with other papers and allows
a smooth limit v = 0 to the hypercomplex or hyperkéahler case. In fact, we have seen in () that
supersymmetry in the setting of hypercomplex manifolds demands that the right-hand side of () is
zero. We will see below that this is unavoidable for hypercomplex manifolds even outside the context of
supersymmetry.
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The trace that appears in the first term can be evaluated by using (B.8() and once
more (B.82), while in the second term we can use the cyclicity condition of the curva-

ture and (B.48) to obtain
202 PP PY + Ryw kY kY —vfi,/ S Pg =0. (B.87)

We thus found that the moment maps, defined in (B.82) satisfy (B.84) and (B.87). The
first of these shows that we can take v = 0 for the hypercomplex or hyperkahler manifolds.
Both these two relations vanish identically in this case. However, for quaternionic-K&hler
and hyperkahler manifolds, we can use (B.7(]), and dividing by v leads to

JywkW = —29,P% (B.88)
1
—2we*P PP P) + ijaywk}”kY,V — fi5PE =0. (B.89)

These equations are thus equivalent to the previous ones for v # 0 if there is a metric.
This is thus the quaternionic-Kahler case, for which these relations appear already in [p5].
But we did not derive these equations for the v = 0 (hyperkéhler) case. Rather, the
first one is taken as the definition of P for this case. This equation also follows from
supersymmetry requirements, where the moment map P;* is an object that is needed to
define the action, see (B.34)). The moment map is then determined up to constants. As
we saw in section B.3.9, the constants are fixed when conformal symmetry is imposed.
Similarly, the second equation appears in supersymmetry as a requirement, see (§.36). For
a conformal invariant theory, the constants in P} are determined and the moment map
again satisfies (B.89) automatically due to a similar calculation as the one that we did above
for v # 0. Note, however, that for the quaternionic manifolds that are not quaternionic-
Kihler, we can only use (B.84) and (B.87), as (B.8§) and (B.89) need a metric. For
hypercomplex manifolds, on the other hand, the moment maps are not defined.

C. Examples: hypercomplex group manifolds

In this appendix we illustrate explicit examples of hypercomplex manifolds. Specifically,
we demonstrate the non-vanishing of the antisymmetric Ricci tensor for some of these
manifolds. The examples that we have in mind are group manifolds, or cosets thereof.
These have two connections preserving the complex structures, one with and one without
torsion. The torsionful connection preserves a metric, which is on the group manifolds the
Cartan-Killing metric. First we consider the generic setup which has such two connections.

C.1 Hypercomplex manifolds with metric and torsionful connection

We consider a space with a metric gxy and torsionful connection coefficients
Tiyvz® =z £Tyz~, (C.1)

where vy zX are the Levi-Civita connection coefficients with respect to this metric, and
where Ty zX = =T,y is the torsion.
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We assume that there are hypercomplex structures that are covariantly constant with
respect to the connection (C.1]). We also assume the Nijenhuis condition and therefore
have an Obata connection T'yy#. Taking the plus sign in (C.1]) we have

0=DxJ%? = oxJ? — (v + T xy"V IW? + (v + T)xw? "W,
= BXJQYZ —FXYWJQWZ—FPXWZJQYW. (CQ)

Then the Obata connection can be related to the Levi-Civita connection and torsion by
1 2
Txy? = yxv? + égaﬁwJaXUJBYVTUVWJVWZ + gJa(XVTY)vWJaWZ . (C.3)
The antisymmetric part of the Ricci tensor of the Obata connection is

Rixy) = 0y T'x12”
2 2
= gJaWZJa[XVQY}TZVW + gTYXUJaWZJaUVTZVW +
+DxTy)z” + Ty xTwu" (C.4)

where ® x is the torsionful connection. If the torsion is covariant constant and traceless,

as it is in group manifolds, then
2
Rixy) = gTXYZVZ with Vg = J° 2V TP gV . (C.5)

This is the only surviving part of the Ricci tensor in hypercomplex manifolds, and will be
used below.
The Nijenhuis condition can be written as a condition on the torsion (using the metric

to lower indices) as [B]]
37 VI Ty = 6% Txyz . (C.6)

Using the quaternionic algebra J1'.J? = J2 = —J2J! and the Nijenhuis condition for one of
the complex structures, one can show that the contributions from o = 1,2 and 3 in ([C.5))

are all equal.

C.2 Group manifolds

In [BJ], 2-dimensional sigma models with extended supersymmetry on group manifolds
were studied. In the case of N = 4, it was shown to be possible to construct three globally
defined, covariantly constant complex structures, on certain groups. Using cohomology, one
argues'? that these manifolds are in fact hypercomplex. For these arguments one makes
use the fact that the second de Rham cohomology vanishes for all simple groups, whereas
Kahler manifolds have a non-trivial Kahler 2-form.

We will explicitly construct the Ricci tensor on the group manifolds considered in [R3],
and show that there are cases with non-vanishing Ricci tensor. As this is an antisymmetric
tensor, there is no invariant metric for the Obata connection.

1YWe thank George Papadopoulos for pointing this out to us.
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In [BJ], the complex structures were first constructed in one fibre, and then used to
form a field of complex structures with the help of the left- or right-invariant vector fields,
giving rise to (J¢). As the sigma models included an antisymmetric tensor field in their
action, the connection used in the equations of motion had torsion, which could be written
in terms of the structure constants of the groups. The connections I' ¢ corresponding to J¢
differed in a sign, in the sense of ([C.1]). The torsion T'xy 7 is completely anti-symmetric,
and defined as (denoting the flat indices on the group manifold with AS, . )

¢“VTyxy = Txy? = %eé\(e)z/f};gelg (C.7)
where the eAX are vielbeins, and dual to the left- or right invariant vector fields. The
vielbeins (and the torsion) are covariantly constant with respect to the connection I' 1y 7~

We will now construct the vector V of (C.5) explicitly, using the connection I'. This
means that the complex structures, defined in one fibre, define a field of complex structures
using the left-invariant vector fields.

A key concept in the construction of hypercomplex group manifolds, are the so-called
stages. This is because the 3 complex structures in fact act within any such ‘stage’. A
stage consists of a subset of the generators of a group on which a hypercomplex structure
is defined. One can start from any simple group G to define a stage. One starts by picking
out a highest root 6. One adds —6, all the roots that are not orthogonal to # and two more
generators. One of these is the generator in the Cartan subalgebra (CSA) in the direction
of # and —#. If the subspace of roots orthogonal to # form a root space of dimension
(rank G —2), then the second one is the other element in the CSA that does not belong to
the simple group defined with the roots orthogonal to 6. This happens only for G = SU(n)
with n > 3. In all other cases one has to consider G x U(1) in order to be able to define a
hypercomplex structure. The roots  and —f and the two generators of the CSA define an
algebra SU(2) @ U(1). The stage can thus be written as

SU@2) ®UL) & W, (C.8)

where W are all the roots not orthogonal to #. These form a ‘Wolf space’. The Wolf spaces

W=-G , G # SU(n), ~
HxSU(2) dim W = 4(h, — 2), (C.9)
W = SU(n) n>3 ’
SU(m—2)xSU(2)xU(1) ° =

where ﬁg is the dual Coxeter number'® of the group G, are the quaternionic symmetric
spaces. So far, we considered compact groups. The only non-compact groups that are
allowed are those real forms where just the generators in W are non-compact, and all the
others are compact. Hereafter, the group generated by the roots orthogonal to 6, together
with the remaining elements in the Cartan subalgebra [being H or SU(n — 2) in (C.9)],
is used to construct a new stage in the same way. By this procedure, one constructs the

complex structures in one fibre of the group. For more details we refer to [B3] or [B4].

5Tables are given in [@, e.g. hy = n for SU(n).
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We will now give explicitly the hypercomplex structures (in one stage) in a language
adapted to this paper. As we use flat space indices on a Lie group, these take values in the
Lie algebra. The base for our Lie algebra is taken to be Cartan-Weyl. We will use hatted
Greek capitals to denote all Lie algebra elements. 6 and —6 are the chosen highest root
and its negative. Greek capital letters denote the positive generators in W. The full set
in W consists thus of those indicated by A and those by —A. Small Roman letters k, ¢
indicate elements of the Cartan subalgebra. The full set of generators is thus

A= {=0,—A,k, A, 0} @ other stages, (C.10)

where A runs over Q(iLg —2) values and k =1, 2.

First, it is useful to give some more information about the structure of the algebra in
a stage. The root vectors are indicated as g or A and particular components as 6 or Ay.
The following properties of structure constants, Cartan-Killing metric and root vectors are

useful:
1
k k +AT0
fis A = T, kig =40k, fA-a=2r, fo_o=0k, [iriyg= Eoan,
- 1 |
2 02
2x :h‘gzﬁj A0:§0, CMA:—O(@,A:il,
e = —0ed? 9,-0 = ga,-a = —0°. (C.11)
These relations fix a normalization for the generators.
We can now write the non-zero elements of the complex structures as
Tt = ere, Jlig™ = 41, Jrats = +i
T2 1oz TA = Fiaa, J2E0 = 2 (£10; — erebl) J2 1ok = 2 (£10) + ereby)
T LozaT2 = an, I3 = 2 (0 £+ ieeby) JPooF = x (=0, £ icpby) .
(C.12)

These satisfy the Nijenhuis conditions ({C.6)).

As written at the end of section [C.J], we can limit the calculation of V to the con-
tribution of one of the complex structures. The torsion is proportional to the structure
constants, and as J! is diagonal in the roots, the vector Vs, has only non-zero components
along the Cartan subalgebra:

3 3 A . . =
Vi = §J1k£f£7AFJ1f‘A = Jeped (62 + ZAZ> = 315k262(hg -1). (C'l?))
A

Though this is non-zero for all the groups under consideration, the Ricci tensor is only non-
vanishing for G = SU(n) with n > 3. Indeed, in all other cases, the generator corresponding
to the index k in ([C.13) corresponds to the extra U(1) factor that was added to G, and
there are thus no non-vanishing Rxy = %Txkak.

The only case in which we find a non-vanishing Ricci tensor, is when the Wolf space is

SU(n)

W= SU(n —2) x SU(2) x U(1)’

n >3, (C.14)
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Then the non-vanishing components of the Ricci tensor are of the form
RBA_A=—-R_an= iAkEkgHg(iLg -1), (C.15)

and one can see again that Agegs0y vanishes for all other cases than G = SU(n). In this
case, it is simply a function of n.

The group manifolds that have a non-zero Ricci tensor are those that have a stage
with the Wolf spaces ([C.14). Checking the list in [BJ], these are SU(2n —1), SU(2n) x U(1)
(both for n > 2) and Eg x U(1)2. The other cases are Ricci flat, and one may wonder
whether there is a metric whose Levi-Civita tensor is the Obata connection. This can not
be the Cartan-Killing metric as its Levi-Civita tensor has a non-vanishing Ricci tensor and
we just proved that the Obata connection has vanishing Ricci tensor. One may try to use
cohomological arguments to exclude also any other metric.

After obtaining this result, we can understand it from the geometrical structure of the
stages. We see that the origin of a non-zero Ricci tensor sits in the fact that there are
non-zero roots in the direction of the U(1) factor in the decomposition ([C.8]). Thus, we see
that we obtain a non-zero Ricci tensor if this U(1) is already present in the structure of
the Wolf space, i.e. the origin sits in the U(1) factor in the structure of the coset ([C.14).
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