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corresponding new actions and scalar potentials. Finally, we extend the supersymmetry

to local superconformal symmetry, making use of the Weyl multiplet. Throughout the

paper, we will indicate the various geometrical concepts that arise, and as an application

we compute the non-vanishing components of the Ricci tensor of hypercomplex group

manifolds. Our results can be used as a starting point to obtain more general matter-

couplings to Poincaré supergravity.
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1. Introduction

Recently, much attention has been given to D = 5 matter-coupled supergravity theo-

ries [1, 2], thereby generalizing the earlier results of [3, 4]. This is mainly due to the fact

that matter couplings in five dimensions play an important role in theories with large extra

dimensions [5]–[8]. In particular, the properties of the scalar potential determine whether

or not a supersymmetric Randall-Sundrum (RS) scenario [7, 8] is possible. The possibility

of such a supersymmetric RS scenario relies on the existence of a domain-wall solution con-

taining a warp factor with the correct asymptotic behaviour such that gravity is suppressed

in the transverse direction. It turns out that constructing such a domain-wall solution is

nontrivial.

With only vector multiplets and no singular source insertions, a no-go theorem was

established for smooth domain-wall solutions [9, 10]. It has been shown that solutions

acceptable for a supersymmetric RS scenario can be found provided one allows for branes

as singular insertions [11]. Another approach is to include hypermultiplets [12]–[14]. The

general mixing of vector and hypermultiplets was considered in [15], and its possibilities

were further analysed in [16]. It seems that with such general matter couplings there is

no a priori obstruction for a supersymmetric RS scenario, although an acceptable smooth

solution has not yet been found. Improvements in the last year involve curved branes [17]–

[20] and the use of non-homogeneous quaternionic spaces [21].

Matter-coupled D = 5 supergravity theories also play an important role in AdS6/

CFT5 [22] and AdS5/CFT4 [23] correspondences. In particular, the D = 5 domain-wall

solutions describe the renormalization group flow of the corresponding four-dimensional

field theory. The geometrical warp factor now plays the role of an energy scale. The

structure of the domain wall is determined by the properties of the scalar potential. Finally,

domain wall solutions have been applied to cosmology in the context of e.g. inflation [24] and

quintessence [25]. In this context, it is important to find out what the detailed properties

of the scalar potential are, and which kind of domain walls they give rise to.

The reasons given above motivated us to reconsider matter couplings in five dimensions,

to independently derive the most general D = 5 matter couplings of [2] and, perhaps,

to find more general matter couplings. Our strategy was to use the so-called conformal

approach [26]–[29]. An advantage of the conformal construction is that, by past experience,

it leads to insights into the structure of the matter couplings. A recent example is the

insight in relations between hyperkähler cones and quaternionic manifolds, based on the

study of superconformal matter couplings with hypermultiplets [30, 31].

In [32, 33], the first step in the conformal programme has been performed by con-

structing the Weyl multiplets of N = 2 conformal supergravity in five dimensions. The

purpose of this paper is to take the next step in the conformal programme and introduce

the different D = 5 matter multiplets with 8 conformal supersymmetries together with the

corresponding actions (when they exist). Similar steps, have been performed in [33]–[35].

These authors also constructed off-shell superconformal multiplets. We will be able to

generalize their results by not restricting ourselves to off-shell multiplets. Especially for

the hypermultiplets this is important, as general quaternionic manifolds are not obtained
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from an off-shell calculus. In this context we should also mention earlier work on (non-

conformal) on-shell multiplets by Zucker [36, 37]. In a next paper, we will take the last

step in the conformal programme and impose different gauge-fixings. This will give us the

D = 5 matter couplings we are aiming at. It was recently [38] shown how this method can

be applied in the context of the RS scenario, for coupling the D = 5 bulk supergravity to

D = 4 brane matter multiplets in a superconformal invariant way. We hope that our more

general results may also be helpful in these investigations.

There is a rather different, more general, motivation of why the D = 5 matter-coupled

supergravities are interesting to study. The reason is that they belong to the class of the-

ories with eight supersymmetries [39]. Such theories are especially interesting since the

geometry, determined by the kinetic terms of the scalars, contains undetermined functions.

Theories with 32 supersymmetries have no matter multiplets while the geometry of those

with 16 supersymmetries is completely determined by the number of matter multiplets. Of

course, theories with 4 supersymmetries allow for more general geometries. The restricted

class of geometries, in the case of 8 supersymmetries, makes these theories especially in-

teresting and manageable. For instance, the work of Seiberg and Witten [40, 41] heavily

relies on the presence of 8 supersymmetries. Theories with 8 supersymmetries are thus

the maximally supersymmetric theories that, on the one hand, are not completely deter-

mined by the number of matter multiplets in the model and, on the other hand, allow

arbitrary functions in their definition, i.e. continuous deformations of the metric of the

manifolds.

The geometry related to supersymmetric theories with 8 real supercharges is called

‘special geometry’. Special geometry was first found in [42, 43] for local supersymmetry

and in [44, 45] for rigid supersymmetry. It occurs in Calabi-Yau compactifications of type

II superstrings as the moduli space of these manifolds [46]–[51]. Special geometry was a

very useful tool in the investigation of supersymmetric black holes [52, 53]. The work of

Seiberg and Witten [40, 41] was based on the use of (rigid) special geometry. Later, the

AdS/CFT correspondence [54] gave new applications of special geometry. So far, special

geometry had been mainly investigated in the context of four dimensions. In the context of

M theory compactifications on a Calabi-Yau [55], and with the advent of the brane-world

scenarios [7, 8], also theD = 5 variant of special geometry [3], called ‘very special geometry’,

received a lot of attention. The connection to special geometry was made in [56]. Last

but not least, mathematicians got interested in special geometry due to its relation with

quaternionic geometry [47], which lead to new results on the classification of homogeneous

quaternionic spaces [57, 58].

We mentioned already that a conformal tensor calculus for D = 5 matter multiplets

with 8 supersymmetries has already been introduced in [34, 35, 33]. However, there are still

some ingredients missing: in particular the geometrical features have not been discussed

at the most general level. In this paper, we use superconformal methods to fill this gap.

We start with listing the basic superconformal matter multiplets: vector/tensor multiplets,

linear multiplets and hypermultiplets. Some of these multiplets are off-shell, others imply

equations of motion that define dynamical models. The closure of the algebra leads to

equations that determine the evolution of the fields. In fact, by now we are used to handle
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theories without starting from a bona-fide action. Indeed, this is the way in which we

often work with IIB supergravity, or theories with self-dual antisymmetric tensor fields.

Therefore, rather than starting to analyse the most general matter couplings from looking

for invariant actions, we first can start the analysis of the multiplets, which in some cases

already gives dynamical systems. The latter allow more general matter couplings than

those constructed from a lagrangian.

In particular, we will not only introduce vector multiplets in the adjoint representation

but, more generally, so-called ‘vector-tensor’ multiplets in arbitrary representations. This

includes couplings with an odd number of tensor multiplets. This may generalize the anal-

ysis made e.g. recently in [59]. Furthermore, as far as the hypermultiplets are concerned,

we will introduce more general geometries than hyperkähler for rigid supersymmetry, or

quaternionic-Kähler for supergravity. We can find dynamical theories also without the need

of an action, i.e. in hypercomplex geometry, which is hyperkähler geometry where there

may not be a metric. Also in N = 8 theories in 5 dimensions, more general possibilities

were found in [60] by considering theories where the dynamical equations are considered

without the necessity of an action.

In a second step, we construct rigid superconformal lagrangians. This will require an

extra ingredient, namely the existence of a certain covariant tensor, that is not available

for all dynamical systems and leads to a restriction on the possible geometries. In a last

step, we will extend the supersymmetry to a local conformal supersymmetry, making use

of the Weyl multiplet constructed in [32, 33].

The first two steps discussed above only deal with the case of rigid conformal super-

symmetry. This case is sufficient to explain most of the subtleties concerning the possible

geometrical structures. It is only at the last step that we introduce the full complications

of coupling the matter multiplets to conformal supergravity.

The paper is organised as follows. First, in section 2, we perform step one and list

the basic superconformal matter multiplets. We construct and discuss the possible matter

couplings in the absence of a lagrangian. Next, in section 3, we perform the second step

and construct rigid superconformal lagrangians. We discuss the restrictions on the possi-

ble geometries that follow from the requirement of a lagrangian. Finally, in section 4, we

perform the last step and extend the supersymmetry to local superconformal symmetry,

making use of the Weyl multiplet constructed in [32, 33]. Our aim is twofold: we want

to determine and deduce the various restrictions from supersymmetry, and we want to

determine the independent geometrical quantities that are needed for constructing super-

conformal matter theories. Our results can be used as a starting point to obtain more

general matter couplings to Poincaré supergravity.

In a first appendix, we mention the linear multiplet, which does not play a big role in

our paper. Appendix B gives a summary of the properties of hypercomplex manifolds and

their place in the family of quaternionic-like manifolds. Explicit examples of hypercomplex

manifolds that are not hyperkähler are given in appendix C. In that last appendix we

calculate explicitly the non-vanishing antisymmetric Ricci tensor for these manifolds, which

is also a new result.

The conventions that we use are given in [32, appendix A].

– 4 –
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2. Multiplets of rigid conformal supersymmetry

In this section, we will introduce the basic superconformal matter multiplets. We start

with giving a short review of rigid conformal supersymmetry in the first subsection. For a

more extended discussion, see e.g. [61]. In the remaining subsections, we will discuss the

various multiplets: the vector-tensor multiplet, the linear multiplet and the hypermultiplet.

2.1 Definition of rigid conformal (super-)symmetry

We first introduce conformal symmetry and in a second step extend this to conformal super-

symmetry. Given a spacetime with a metric tensor gµν(x), the conformal transformations

are defined as the general coordinate transformations that leave “angles” invariant. The

parameters of these special coordinate transformations define a conformal Killing vector

kµ(x). The defining equation for this conformal Killing vector is given by

δg.c.t.(k)gµν(x) ≡ ∇µkν(x) +∇νkµ(x) = ω(x)gµν(x) , (2.1)

where ω(x) is an arbitrary function, kµ = gµνk
ν and the covariant derivative is given by

∇µkν = ∂µkν − Γρµνkρ. In flat D-dimensional Minkowski spacetime, (2.1) implies

∂(µkν)(x)−
1

D
ηµν∂ρk

ρ(x) = 0 . (2.2)

In dimensions D > 2, the conformal algebra is finite-dimensional. The solutions of (2.2)

are given by

kµ(x) = ξµ + λµνM xν + λDx
µ +

(
x2Λµ

K − 2xµx · ΛK

)
. (2.3)

Corresponding to the parameters ξµ are the translations Pµ, the parameters λµνM corre-

spond to Lorentz rotations Mµν , to λD are associated the dilatations D, and Λµ
K are the

parameters of ‘special conformal transformations’ Kµ. Thus, the full set of conformal

transformations δC can be expressed as follows:

δC = ξµPµ + λµνMMµν + λDD +Λµ
KKµ . (2.4)

The commutators between different generators define the conformal algebra which is iso-

morphic to the algebra of SO(D, 2).

We wish to consider representations of the conformal algebra on fields φα(x) where α

stands for a collection of internal indices referring to the stability subalgebra of xµ = 0.

From the expression (2.3) for the conformal Killing vector, we deduce that this algebra is

isomorphic to the algebra generated by Mµν , D and Kµ. We denote the generators of this

stability subalgebra by Σµν ,∆ and κµ. Applying the theory of induced representations, it

follows that any representation (Σ,∆, κ) of the stability subalgebra induces a representation

of the full conformal algebra with the following transformation rules (we suppress any

– 5 –
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internal indices):

δPφ(x) = ξµ∂µφ(x) ,

δMφ(x) =
1

2
λµνM (xν∂µ − xµ∂ν)φ(x) + δΣ(λM )φ(x) ,

δDφ(x) = λDx
λ∂λφ(x) + δ∆(λD)φ(x) ,

δKφ(x) = λµK(x2∂µ − 2xµx
λ∂λ)φ(x) +

+
(
δ∆(−2x · ΛK) + δΣ(−4x[µλKν]) + δκ(λK)

)
φ(x) . (2.5)

We now look at the non-trivial representation (Σ,∆, κ) that we use in this paper. First,

concerning the Lorentz representations, in this paper we will encounter anti-symmetric

tensors φa1···an(x) (n = 0, 1, 2, . . .) and spinors ψα(x):

δΣ(λM )φa1 ···an(x) = −n(λM)[a1

bφ|b|a2···an](x) ,

δΣ(λM )ψ(x) = −
1

4
λabMγabψ(x) . (2.6)

Second, we consider the dilatations. For most fields, the ∆ transformation is just

determined by a number w, which is called the Weyl weight of φα:

δ∆(λD)φ
α(x) = wλDφ

α(x) . (2.7)

For scalar fields, it is often convenient to consider the set of fields φα as the coordinates of a

scalar manifold with affine connection Γαβ
γ . With this understanding, the transformation

of φα under dilatations can be characterized by:

δ∆(λD)φ
α = λDk

α(φ) . (2.8)

Requiring dilatational invariance of kinetic terms determined by a metric gαβ , the vec-

tor kα should be a homothetic Killing vector, i.e. it should satisfy the conformal Killing

equation (2.1) for constant ω(x):

Dαkβ + Dβkα = (D − 2)gαβ , (2.9)

where D denotes the spacetime dimension and Dαkβ = ∂αkβ − Γαβ
γkγ . However, (2.5)

shows that the ∆-transformation also enters in the special conformal transformation. It

turns out that invariance of the kinetic terms under these special conformal transformations

restricts kα(φ) further to a so-called exact homothetic Killing vector, i.e.,

kα = ∂αχ , (2.10)

for some function χ(φ). One can show that the restrictions (2.9) and (2.10) are equivalent to

Dαk
β ≡ ∂αk

β + Γαγ
βkγ = wδα

β . (2.11)

The constant w is identified with the Weyl weight of φα and is in general w = (D − 2)/2,

i.e. 3/2 in our case. The proof of the necessity of (2.11) can be extracted from [62], see

– 6 –
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also [63, 64]. In these papers the conditions for conformal invariance of a sigma model

with either gravity or supersymmetry are investigated. By restricting the proof to rigid

conformal symmetry (without supersymmetry) we find the same conditions.

Note that the condition (2.11) can be formulated independent of a metric. Only an

affine connection is necessary. Indeed, we will find the same condition from the closure of

the superconformal algebra before any metric and/or action has been introduced. In four

spacetime dimensions, this was done in [63].

For the special case of a zero affine connection, the homothetic Killing vector is given

by kα = wφα and the transformation rule (2.8) reduces to δ∆(λD)φ
α = wλDφ

α. Note that

the homothetic Killing vector kα = wφα is indeed exact with χ given by

χ =
1

(D − 2)
kαgαβk

β . (2.12)

Finally, all fields that we will discuss in this paper are invariant under the internal

special conformal transformations, i.e. δκφ
α = 0.

We next consider the extension to conformal supersymmetry. The parameters of these

supersymmetries define a conformal Killing spinor εi(x) whose defining equation is given by

∇µε
i(x)−

1

D
γµγ

ν∇νε
i(x) = 0 . (2.13)

In D-dimensional Minkowski spacetime this equation implies

∂µε
i(x)−

1

D
γµ /∂ε

i(x) = 0 . (2.14)

The solution to this equation is given by

εi(x) = εi + ixµγµη
i , (2.15)

where the (constant) parameters εi correspond to “ordinary” supersymmetry transforma-

tions Qi
α and the parameters ηi define special conformal supersymmetries generated by

Siα. The conformal transformation (2.3) and the supersymmetries (2.15) do not form a

closed algebra. To obtain closure, one must introduce additional R-symmetry generators.

In particular, in the case of 8 supercharges Qi
α in D = 5, there is an additional SU(2)

R-symmetry with generators Uij = Uji (i = 1, 2). Thus, the full set of superconformal

transformations δC is given by:

δC = ξµPµ + λµνMMµν + λDD +Λµ
KKµ +ΛijUij + i ε̄Q+ i η̄S . (2.16)

We refer to [32] for the full superconformal algebra F 2(4) formed by (anti-)commutators

between the (bosonic and fermionic) generators.

To construct field representations of the superconformal algebra, one can again apply

the method of induced representations. In this case one must use superfields Φa(xµ, θiα),

where a stands for a collection of internal indices referring to the stability subalgebra of

xµ = θiα = 0. This algebra is isomorphic to the algebra generated by Mµν , D,Kµ, Uij
and Siα.

– 7 –
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An additional complication, not encountered in the bosonic case, is that the represen-

tation one obtains is reducible. To obtain an irreducible representation, one must impose

constraints on the superfield. It is at this point that the transformation rules become non-

linear in the fields. In this paper, we will follow a different approach. Instead of working

with superfields we will work with the component “ordinary” fields. The different nonlinear

transformation rules are obtained by imposing the superconformal algebra.

In the supersymmetric case, we must specify the SU(2)-properties of the different

fields as well as the behaviour under S-supersymmetry. Concerning the SU(2), we will

only encounter scalars φ, doublets ψi and triplets φ(ij) whose transformations are given by

δSU(2)(Λ
ij)φ = 0 ,

δSU(2)(Λ
ij)ψi(x) = −Λi

jψ
j(x) ,

δSU(2)(Λ
ij)φij(x) = −2Λ(ikφ

j)k(x) . (2.17)

The scalars of the hypermultiplet will also have an SU(2) transformation despite the absence

of an i index. We refer for that to section 2.3.2.

This leaves us with specifying how a given field transforms under the special super-

symmetries generated by Siα. In superfield language the full S-transformation is given by a

combination of an x-dependent translation in superspace, with parameter εi(x) = ixµγµη
i,

and an internal S-transformation. This is in perfect analogy to the bosonic case. In terms

of component fields, the same is true. The x-dependent contribution is obtained by making

the substitution

εi → i /xηi (2.18)

in the Q-supersymmetry rules. The internal S-transformations can be deduced by imposing

the superconformal algebra. In the next three subsections, we will give the explicit form

of these internal S-transformations for different matter multiplets.

Finally, we give below some of the commutators of the (rigid) superconformal algebra

expressed in terms of commutators of variations of the fields. These commutators are

realized on all matter multiplets discussed in the next subsections. The commutators

between Q- and S-supersymmetry are given by

[δQ(ε1), δQ(ε2)] = δP

(
1

2
ε̄2γµε1

)
, (2.19)

[δS(η), δQ(ε)] = δD

(
1

2
i ε̄η

)
+ δM

(
1

2
i ε̄γabη

)
+ δU

(
−
3

2
i ε̄(iηj)

)
, (2.20)

[δS(η1), δS(η2)] = δK

(
1

2
η̄2γ

aη1

)
. (2.21)

For later use we list a few more commutators:

[
δD(ΛD), δQ(ε

i)
]
= δQ

(
1

2
εiΛD

)
, (2.22)

[
δSU(2)(Λ

ij), δQ(ε
k)
]
= δQ

(
εjΛj

i
)
, (2.23)

[
δK(ΛK), δQ(ε

i)
]
= δS

(
i /ΛKε

i
)
. (2.24)
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Field SU(2) w # d.o.f.

off-shell vector multiplet

AI
µ 1 0 4n

Y ijI 3 2 3n

σI 1 1 1n

ψiI 2 3/2 8n

on-shell tensor multiplet

BM
µν 1 0 3m

φM 1 1 1m

λiM 2 3/2 4m

on-shell hypermultiplet

qX 2 3/2 4r

ζA 1 2 4r

off-shell linear multiplet

Lij 3 3 3

Ea 1 4 4

N 1 4 1

ϕi 2 7/2 8

Table 1: The D = 5 matter multiplets. We introduce n vector multiplets, m tensor multiplets

and r hypermultiplets. Indicated are their degrees of freedom, the Weyl weights and the SU(2)

representations, including the linear multiplet for completeness.

Note that to verify these commutators one should use not only the internal but the full

superconformal transformation rules including the x-dependent translations (see (2.5)) and

Q-supersymmetries (see (2.18)).

Now it’s clear how generic fields transform under the superconformal group, we briefly

give the field content and properties of the basic superconformal multiplets in five dimen-

sions. They will be used for studying matter couplings in the remainder of this article.

The linear multiplet will only be used as the multiplet of the equations of motion for the

vector multiplet.

2.2 The vector-tensor multiplet

In this section, we will discuss superconformal vector multiplets that transform in arbi-

trary representations of the gauge group. From work on N = 2, D = 5 Poincaré matter

couplings [1] it is known that vector multiplets transforming in representations other than

the adjoint have to be dualized to tensor fields. We define a vector-tensor multiplet to

be a vector multiplet transforming in a reducible representation that contains the adjoint

representation as well as another, arbitrary representation.

We will show that the analysis of [1] can be extended to superconformal vector multi-

plets. In doing this we will generalize the gauge transformations for the tensor fields [1] by

allowing them to transform into the field-strengths for the adjoint gauge fields. These more

general gauge transformations are consistent with supersymmetry, even after breaking the

conformal symmetry.
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The vector-tensor multiplet contains a priori an arbitrary number of tensor fields. The

restriction to an even number of tensor fields is not imposed by the closure of the algebra.

If one demands that the field equations do not contain tachyonic modes, an even number

is required [65]. Closely related to this is the fact that one can only construct an action

for an even number of tensor multiplets. But supersymmetry without an action allows

the more general possibility. Note that these main results are independent of the use of

superconformal or super-Poincaré algebras.

To make contact with other results in the literature we will break the rigid conformal

symmetry by using a vector multiplet as a compensating multiplet for the superconformal

symmetry. The adjoint fields of the vector-tensor multiplet are given constant expectation

values, and the scalar expectation values will play the role of a mass parameter. This will

reduce the superconformal vector-tensor multiplet, for the case of two tensor multiplets, to

the massive self-dual complex tensor multiplet of [65].

2.2.1 Adjoint representation

We will start with giving the transformation rules for a vector multiplet in the adjoint

representation [33]. An off-shell vector multiplet has 8 + 8 real degrees of freedom whose

SU(2) labels and Weyl weights we have indicated in table 1.

The gauge transformations that we consider satisfy the commutation relations (I =

1, . . . , n) [
δG(Λ

I
1), δG(Λ

J
2 )
]
= δG(Λ

K
3 ) , ΛK

3 = gΛI
1Λ

J
2 fIJ

K . (2.25)

The gauge fields AI
µ (µ = 0, 1, . . . , 4) and general matter fields of the vector multiplet as

e.g. XI transform under gauge transformations with parameters ΛI according to

δG(Λ
J)AI

µ = ∂µΛ
I + gAJ

µfJK
IΛK , δG(Λ

J )XI = −gΛJfJK
IXK , (2.26)

where g is the coupling constant of the group G. The expression for the gauge-covariant

derivative of XI and the field-strengths are given by

DµX
I = ∂µX

I + gAJ
µfJK

IXK , F I
µν = 2∂[µA

I
ν] + gfJK

IAJ
µA

K
ν . (2.27)

The field-strength satisfies the Bianchi identity

D[µF
I
νλ] = 0 . (2.28)

The rigid Q- and S-supersymmetry transformation rules for the off-shell Yang-Mills

multiplet are given by [33]

δAI
µ =

1

2
ε̄γµψ

I ,

δY ijI = −
1

2
ε̄(i /Dψj)I −

1

2
i gε̄(ifJK

IσJψj)K +
1

2
i η̄(iψj)I ,

δψiI = −
1

4
γ · F Iεi −

1

2
i /DσIεi − Y ijIεj + σIηi ,

δσI =
1

2
i ε̄ψI . (2.29)
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The commutator of two Q-supersymmetry transformations yields a translation with an

extra G-transformation

[δ(ε1), δ(ε2)] = δP

(
1

2
ε̄2γµε1

)
+ δG

(
−
1

2
i σε̄2ε1

)
. (2.30)

Note that even though we are considering rigid superconformal symmetry, the algebra

(2.30) contains a field-dependent term on the righthand side. Such soft terms are common-

place in local superconformal symmetry but here they already appear at the rigid level. In

hamiltonian language, it means that the algebra is satisfied modulo constraints.

2.2.2 Reducible representation

Starting from n vector multiplets we now wish to consider a more general set of fields

HĨ
µν (Ĩ = 1, . . . , n+m). We write HĨ

µν = {F I
µν , B

M
µν} with Ĩ = (I,M) (I = 1, . . . , n;M =

n+1, . . . n+m). The first part of these fields corresponds to the generators in the adjoint

representation. These are the fields that we used in subsection 2.2.1. The other fields may

belong to an arbitrary, possibly reducible, representation:

(tI)J̃
K̃ =

(
(tI)J

K (tI)J
N

(tI)M
K (tI)M

N

)
,

{
I, J,K = 1, . . . , n

M,N = n+ 1, . . . , n+m.
(2.31)

It is understood that the (tI)J
K are in the adjoint representation, i.e.

(tI)J
K = fIJ

K . (2.32)

If m 6= 0, then the representation (tI)J̃
K̃ is reducible. We will see that this representation

can be more general than assumed so far in treatments of vector-tensor multiplet couplings.

The requirement that m is even will only appear when we demand the existence of an

action in section 3.2, or if we require absence of tachyonic modes. The matrices tI satisfy

commutation relations

[tI , tJ ] = −fIJ
KtK , or t

IÑ
M̃ t

JM̃
L̃ − t

JÑ
M̃ t

IM̃
L̃ = −fIJ

Kt
KÑ

L̃ . (2.33)

If the index L̃ is a vector index, then this relation is satisfied using the matrices as in (2.32).

Requiring the closure of the superconformal algebra, we find Q- and S-supersymmetry

transformation rules for the vector-tensor multiplet and a set of constraints. The transfor-

mations are

δHĨ
µν = −ε̄γ[µDν]ψ

Ĩ + i gε̄γµνt(J̃K̃)
ĨσJ̃ψK̃ + i η̄γµνψ

Ĩ ,

δY ijĨ = −
1

2
ε̄(i /Dψj)Ĩ −

1

2
i gε̄(i

(
t[J̃K̃]

Ĩ − 3t(J̃K̃)
Ĩ
)
σJ̃ψj)K̃ +

1

2
i η̄(iψj)Ĩ ,

δψiĨ = −
1

4
γ · HĨεi −

1

2
i /DσĨεi − Y ijĨεj +

1

2
gt(J̃K̃)

ĨσJ̃σK̃εi + σĨηi ,

δσĨ =
1

2
i ε̄ψĨ . (2.34)

The curly derivatives denote gauge-covariant derivatives as in (2.27) with the replacement

of structure constants by general matrices tI according to (2.32). We have extended the
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range of the generators from I to Ĩ in order to simplify the transformation rules with the

understanding that

(tM )
J̃
K̃ = 0 . (2.35)

We use a convention where (anti)symmetrizations are done with total weight 1. We find

that the supersymmetry algebra (2.30) is satisfied provided the representation matrices are

restricted to

t(J̃K̃)
I = 0 , (2.36)

and provided the following two constraints on the fields are imposed:

LijĨ ≡ t
(J̃K̃)

Ĩ

(
2σJ̃Y ijK̃ −

1

2
i ψ̄iJ̃ψjK̃

)
= 0 , (2.37)

E Ĩ
µνλ ≡

3

g
D[µHνλ]

Ĩ − εµνλρσt(J̃K̃)
Ĩ

(
σJ̃HρσK̃ +

1

4
i ψ̄J̃γρσψK̃

)
= 0 . (2.38)

For Ĩ = I, the constraint (2.38) reduces to the Bianchi identity (2.28). The tensor F I
µν

can therefore be seen as the curl of a gauge vector AI
µ. Moreover, the constraint (2.37) is

trivially satisfied for Ĩ = I. We conclude that the fields with indices Ĩ = I form an off-shell

vector multiplet in the adjoint representation of the gauge group.

On the other hand, when Ĩ = M , the constraint (2.38) does not permit the fields

BM
µν to be written as the curl of a gauge field and they should be seen as independent

tensor fields. Instead, the constraint (2.38) is a massive self-duality condition that puts

the tensors BM
µν on-shell. The constraint (2.37) implicitly allows us to eliminate the fields

Y ijM altogether. The general vector-tensor multiplet can then be interpreted as a set of

m on-shell tensor multiplets in the background of n off-shell vector multiplets.

Using (2.36) we have reduced the representation matrices tI to the following block-

upper-triangular form:

(tI)J̃
K̃ =

(
fIJ

K (tI)J
N

0 (tI)M
N

)
. (2.39)

In [1] it is mentioned that, “since terms of the form BM ∧ F I ∧ AJ appear to be impos-

sible to supersymmetrize in a gauge invariant way (except possibly in very special cases)

we shall also assume that CMIJ = 0”. This corresponds, as we will see below, to the

assumption that the representation is completely reducible, i.e. tIJ
N = 0, meaning that

gauge transformations do not mix the pure Yang-Mills field-strengths and the tensor fields.

However, we find that off-diagonal generators are allowed, both when requiring closure of

the superconformal algebra and when writing down an action. We thus allow reducible,

but not necessarily completely reducible representations.

Recall that every unitary reducible representation of a Lie group is also completely

reducible, and that every representation of a compact Lie group is equivalent to a unitary

representation. Hence, every reducible representation of a compact Lie group is also com-

pletely reducible. Non-compact Lie groups, on the other hand, have no non-trivial and

finite-dimensional unitary representations. However, every reducible representation of a

connected, semi-simple, non-compact Lie group or a semi-simple, non-compact Lie algebra

is also completely reducible. See [66] for an exposition of these theorems.
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This leaves us with the class of non-compact Lie algebras that contain an abelian

invariant subalgebra. Examples of non-diagonal terms can thus be given for tI of the form

(tI)J̃
K̃ =

(
0 (tI)J

M

0 0

)
. (2.40)

The simplest one is thus with one gauge multiplet and a number of tensor multiplets, with

only the off-diagonal parts t11
M non-vanishing. But more examples are possible, e.g. the

lower right corner does not have to be zero.

The constraints (2.37) and (2.38), with Ĩ = M , do not form a supersymmetric set:

they are invariant under S-supersymmetry but under Q-supersymmetry they lead to a

constraint on the spinors ψiM which we will call ϕiM :

δLijM = i ε̄(iϕj)M , δEM
µνρ = ε̄γµνρϕ

M . (2.41)

The expression for this constraint is given by

ϕiM ≡ t(J̃K̃)
M

[
i σJ̃ /DψiK̃ +

1

2
i
(
/DσJ̃

)
ψiK̃ + Y ikJ̃ψK̃k −

1

4
γ · HJ̃ψiK̃

]
−

− g

([
t[J̃K̃]

L̃ − 3t(J̃K̃)
L̃
]
t(ĨL̃)

M +
1

2
t
ĨJ̃

L̃t(K̃L̃)
M

)
σĨσJ̃ψiK̃

= 0 . (2.42)

The second line can be rewritten, by splitting the indices in tensor versus vector parts, as

+
1

2
gσIσJψK̃(tItJ)K̃

M +
1

4
gσIσK̃ψJ (tItJ + 2tJ tI)K̃

M . (2.43)

Varying the new constraint ϕiM under Q-and S-supersymmetry, one finds at first sight

two more constraints, EM
a and NM , of which the first one turns out to be dependent (see

below):

δϕiM = −
1

2
i /DLij M εj −

1

2
i γaEM

a εi +
1

2
NM εi −

1

2
gt
J̃K̃

MσJ̃LijK̃εj −

−
1

12
i gt(J̃K̃)

MγabcσJ̃EK̃
abcε

i + 3LijMηj . (2.44)

The constraint NM is given by

NM ≡ t
(J̃K̃)

M

(
σJ̃¤σK̃ +

1

2
DaσJ̃Daσ

K̃ −
1

4
HJ̃
abH

abK̃ −
1

2
ψ̄J̃ /DψK̃ + Y ijJ̃Yij

K̃

)
−

− i g

[
−
1

2
t[J̃K̃]

L̃t(ĨL̃)
M + 2 t(ĨJ̃)

L̃t(K̃L̃)
M

]
σĨ ψ̄J̃ψK̃ +

+
1

2
g2 (tItJtK)

L̃
MσIσJσKσL̃

= 0 , (2.45)

and for EM
a we find

EM
a ≡ t

(J̃K̃)
M

(
Db

(
σJ̃Hba

K̃ +
1

4
i ψ̄J̃γbaψ

K

)
−

1

8
εabcdeH

bcJ̃HdeK̃

)
= 0 . (2.46)
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We made use of identities as

t
KĨ

L̃t(J̃L̃)
M + t

KJ̃
L̃t(ĨL̃)

M − t(ĨJ̃)
L̃t

KL̃
M = 0 , (2.47)

which follow from the commutator relation (2.33), and the restrictions (2.35) and (2.36).

We find that the expression for Ea is related to the one corresponding to EM
abc as

follows:

EM
a = −

1

12
εabcdeD

bEcdeM . (2.48)

By now we have found a set of constraints that under Q- and S-supersymmetry trans-

form to each other. These constraints do not seem to form a multiplet by themselves.

2.2.3 The massive self-dual tensor multiplet

To obtain the massive self-dual tensor multiplet of [65], we consider a vector-tensor mul-

tiplet for general n and m. Our purpose is to use the vector multiplet as a compensating

multiplet for the superconformal symmetry. Thus, we impose conditions on the fields that

break the conformal symmetry, and preserve Q-supersymmetry. We give the fields of the

vector multiplets the following vacuum expectation values

F I
µν = Y ijI = ψiI = 0 , σI =

2mI

g
, (2.49)

where mI are constants. Note that these conditions break the conformal group to the

Poincaré group, and break S-supersymmetry (η = 0). This is an example of a compensating

multiplet in rigid supersymmetry. The breaking of conformal symmetry is characterized

by the mass parameters mI in (2.49). If we substitute (2.49) into the expression (2.37) for

LijM , then we find that we can eliminate the field Y ijM

Y ijM = 0 . (2.50)

Moreover, we can also substitute (2.49) into the constraints EM
µνλ, ϕ

iM and NM obtaining

3∂[µB
M
νλ] =

1

2
εµνλρσMN

MBρσN ,

/∂ψiM = iMN
MψiN ,

¤σM = −
(
M2

)
N
MσN −

4

g
tIJ

NmImJMN
M . (2.51)

The mass-matrix MN
M is defined as

MN
M ≡ gσI(tI)N

M = 2mI(tI)N
M , (2.52)

and has been assumed to be invertible. The last term of (2.51) can be eliminated by

redefining σM with a constant shift. In order for the tensor fields to have no tachyonic

modes, the mass-matrix needs to satisfy a symplectic condition which can only be satisfied

if the number of tensor fields is even [65]. We denote the number of tensor multiplets

by m = 2k.

– 14 –



J
H
E
P
1
0
(
2
0
0
2
)
0
4
5

In the particular gauge (2.49) and representation (2.40) the mass matrix M is zero.

The last two equations in (2.51) are not present and the first one becomes the usual Bianchi

identity for a set of m abelian vectors. Thus, we are dealing with n + m off-shell gauge

vectors.

To obtain the massive self-dual tensor multiplet of [65] we consider the case n = 1,

m = 2, i.e. two (real) tensor multiplets {BM
µν , λ

iM , φM} (M,N = 2, 3) in the background of

one vector multiplet {Fµν ψ
i, σ}, which has been given the vacuum expectation value (2.49).

In what follows we will use a complex notation:

Bµν = B2µν + iB3µν , Bµν = B2µν − iB3µν . (2.53)

The generators (t1)Ĩ
J̃ must form a representation of U(1) ' SO(2). Under a U(1) trans-

formation the field-strength Fµν is invariant and the tensor field gets a phase

B′µν = e i θBµν →

(
B2µν
B3µν

)′
=

(
cos θ − sin θ

sin θ cos θ

)
·

(
B2µν
B3µν

)
. (2.54)

From this we obtain the generator

(t1)Ĩ
J̃ =



0 0 0

0 0 −1

0 1 0


 . (2.55)

After substituting the conditions (2.49) into the transformation rules we obtain

δBµν = −ε̄γ[µ∂ν]λ−mε̄γµνλ ,

δλi = −
1

4
γ · Bεi −

1

2
i /∂φεi − imφεi ,

δφ =
1

2
i ε̄λ , (2.56)

and

3∂[µBνλ] − imεµνλρσB
ρσ = 0 . (2.57)

This reproduces the massive self-dual tensor multiplet of [65]. Note that the commutator

of two Q-supersymmetries yields a translation plus a (rigid) U(1)-transformation whose pa-

rameter can be obtained from the general G-transformation in the superconformal algebra,

see (2.30), by making the substitution (2.49).

From a six-dimensional point of view the interpretation of the mass parameter m is

that it is the label of the m-th Kaluza-Klein mode in the reduction of the D = 6 self-dual

tensor multiplet. The zero-mode of the reduced tensor multiplet corresponds to a vector

multiplet as can be seen from (2.57) which becomes a Bianchi identity for a field-strength

when m = 0.
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2.3 The hypermultiplet

In this subsection, we discuss hypermultiplets in five dimensions. As for the tensor multi-

plets, there is in general no known off-shell formulation with a finite number of auxiliary

fields. Therefore, the supersymmetry algebra already leads to the equations of motion.

A single hypermultiplet contains four real scalars and two spinors subject to the sym-

plectic Majorana reality condition. For r hypermultiplets, we introduce real scalars qX(x),

with X = 1, . . . , 4r, and spinors ζA(x) with A = 1, . . . , 2r. To formulate the symplectic

Majorana condition, we introduce two matrices ρA
B and Ei

j , with

ρρ∗ = −
�
2r , EE∗ = −

�
2 . (2.58)

This defines symplectic Majorana conditions for the fermions and supersymmetry trans-

formation parameters [67]:

αCγ0ζ
BρB

A =
(
ζA
)∗
, αCγ0ε

jEj
i =

(
εi
)∗
, (2.59)

where C is the charge conjugation matrix, and α is an irrelevant number of modulus 1. We

can always adopt the basis where Ei
j = εij , and will further restrict to that.

The scalar fields are interpreted as coordinates of some target space, and requiring

the on-shell closure of the superconformal algebra imposes certain conditions on the target

space, which we derive below. Superconformal hypermultiplets in four spacetime dimen-

sions were discussed in [30]; our discussion is somehow similar, but we extend it to the case

where an action is not needed, in the spirit explained in [39].

2.3.1 Rigid supersymmetry

We will show how the closure of the supersymmetry transformation laws leads to a ‘hyper-

complex manifold’. The closure of the algebra on the bosons leads to the defining equations

for this geometry, whereas the closure of the algebra on the fermions and its further con-

sistency leads to equations of motion in this geometry, independent of an action.

The supersymmetry transformations (with εi constant parameters) of the bosons qX(x),

are parametrized by arbitrary functions fXiA(q). Also for the transformation rules of the

fermions we write the general form compatible with the supersymmetry algebra. This

introduces other general functions f iAX (q) and ωXB
A(q):1

δ(ε)qX = − i ε̄iζAfXiA ,

δ(ε)ζA =
1

2
i /∂qXf iAX εi − ζ

BωXB
A
(
δ(ε)qX

)
. (2.60)

The functions satisfy reality properties consistent with reality of qX and the symplectic

Majorana conditions, e.g.:

(
f iAX
)∗

= f jBX Ej
iρB

A ,
(
ωXA

B
)∗

=
(
ρ−1ωXρ

)
A
B . (2.61)

1In fact, one can write down a more general supersymmetry transformation rule for the fermions than

in (2.60), but using Fierz relations and simple considerations about the supersymmetry algebra, one can

bring its form into the one written above.
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A priori the functions fXiA and f iAX are independent, but the commutator of two supersym-

metries on the scalars only gives a translation if one imposes

f iAY fXiA = δXY , f iAX fXjB = δijδ
A
B ,

DY f
X
iB ≡ ∂Y f

X
iB − ω

A
Y B fXiA + Γ X

ZY fZiB = 0 , (2.62)

where ΓXY
Z is some object, symmetric in the lower indices. This means that fXiA and f iAX

are each others inverse and are covariantly constant with connections Γ and ω. It also

implies that ρ is covariantly constant. The conditions (2.62) encode all the constraints on

the target space that follow from imposing the supersymmetry algebra. Below, we show

that there are no further geometrical constraints coming from the fermion commutator;

instead this commutator defines the equations of motion for the on-shell hypermultiplet.

The supersymmetry transformation rules are covariant with respect to two kinds of

reparametrizations. The first ones are the target space diffeomorphisms, qX → q̃X(q),

under which fXiA transforms as a vector, ωXA
B as a one-form, and ΓXY

Z as a connection.

The second set are the reparametrizations which act on the tangent space indices A,B, . . .

On the fermions, they act as

ζA → ζ̃A(q) = ζBUB
A(q) , (2.63)

where U(q)A
B is any invertible matrix. In general, such a transformation brings us into

a basis where the fermions depend on the scalars qX . In this sense, the hypermultiplet is

written in a special basis where qX and ζA are independent fields. The supersymmetry

transformation rules (2.60) are covariant under (2.63) if we transform f iAX (q) as a vector

and ωXA
B as a connection,

ωXA
B → ω̃XA

B = [(∂XU
−1)U + U−1ωXU ]A

B . (2.64)

These considerations lead us to define the covariant variation of the fermions:

δ̂ζA ≡ δζA + ζBωXB
AδqX , (2.65)

for any transformation δ (supersymmetry, conformal transformations,. . . ). Two mod-

els related by either target space diffeomorphisms or fermion reparametrizations of the

form (2.63) are equivalent; they are different coordinate descriptions of the same system.

Thus, in a covariant formalism, the fermions can be functions of the scalars. However,

the expression ∂Xζ
A makes only sense if one compares different bases. But in the same

way also the expression ζBωXB
A makes only sense if one compares different bases, as the

connection has no absolute value. The only covariant object is the covariant derivative

DXζ
A ≡ ∂Xζ

A + ζBωXB
A . (2.66)

The covariant transformations are also a useful tool to calculate any transformation on e.g.

a quantity WA(q)ζ
A:

δ
(
WA(q)ζ

A
)
= ∂X

(
WAζ

A
)
δqX +WA δζ

A
∣∣
q

= DX

(
WAζ

A
)
δqX +WA

(
δ̂ζA −DXζ

AδqX
)

= (DXWA) δq
XζA +WAδ̂ζ

A . (2.67)
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We will frequently use the covariant transformations (2.65). It can similarly be used on

target-space vectors or tensors. E.g. for a quantity ∆X :

δ̂∆X = δ∆X +∆Y ΓZY
XδqZ . (2.68)

The geometry of the target space is that of a hypercomplex manifold. It is a weakened

version of hyperkähler geometry where no hermitian covariantly constant metric is defined.

We refer the reader to appendix B for an introduction to these manifolds, references and

the mathematical context in which they can be situated.

The crucial ingredient is a triplet of complex structures, the hypercomplex structure,

defined as

JαX
Y ≡ − i f iAX (σα)i

jfYjA . (2.69)

Using (2.62), they are covariantly constant and satisfy the quaternion algebra

JαJβ = −
�
4rδ

αβ + εαβγJγ . (2.70)

At some places we also use a doublet notation, for which

JX
Y
i
j ≡ i JαX

Y (σα)i
j = 2f jAX fYiA − δ

j
i δ

Y
X . (2.71)

The same transition between doublet and triplet notation is used also for other SU(2)-

valued quantities.

The holonomy group of such a space is contained in G `(r,H) = SU∗(2r)×U(1), the

group of transformations acting on the A,B-indices. This follows from the integrability

conditions on the covariantly constant vielbeins f iAX , which relates the curvatures of the

ωXA
B and ΓXY

Z connections (see appendix B.2 for conventions on the curvatures),

RXY Z
W = fWiAf

iB
Z RXY B

A , δijRXY B
A = f iAW fZjBRXY Z

W , (2.72)

such that the Riemann curvature only lies in G `(r,H). Moreover, from the cyclicity prop-

erties of the Riemann tensor, it follows that

fXCif
Y
jDRXY B

A = −
1

2
εijWCDB

A ,

WCDB
A ≡ f iXC fYiDRXY B

A =
1

2
f iXC fYiDf

Z
jBf

Aj
W RXY Z

W , (2.73)

where W is symmetric in all its three lower indices. For a more detailed discussion on hy-

percomplex manifolds and their curvature relations, we refer to appendix B. We show there

that, in contrast with hyperkähler manifolds, hypercomplex manifolds are not necessarily

Ricci flat; instead, the Ricci tensor is antisymmetric and defines a closed two-form.

We have so far only used the commutator of supersymmetry on the hyperscalars, and

this lead us to the geometry of hypercomplex manifolds. Before continuing, we want to see

what are the independent objects that determine the theory, and what are the independent

constraints. We start in the supersymmetric theory from the vielbeins f iAX . They have to

be real in the sense of (2.61) and invertible. With these vielbeins, we can construct the
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complex structures as in (2.69). In the developments above, the only remaining indepen-

dent equation is the covariant constancy of the vielbein in (2.62). This equation contains

the affine connection ΓXY
Z and the G `(r,H)-connection ωXA

B . These two objects can

be determined from the vielbeins if and only if the (‘diagonal’) Nijenhuis tensor (B.24)

vanishes. Indeed, for vanishing Nijenhuis tensor, the ‘Obata’-connection [68]

ΓXY
Z = −

1

6

(
2∂(XJ

α
Y )

W + εαβγJβ (X
U∂|U |J

γ
Y )

W
)
JαW

Z , (2.74)

leads to covariantly constant complex structures. Moreover, one can show that any tor-

sionless connection that leaves the complex structures invariant is equal to this Obata

connection (similar to the fact that a connection that leaves a metric invariant is the Levi-

Civita connection). With this connection one can then construct the G `(r,H)-connection

ωXA
B =

1

2
f iBY

(
∂Xf

Y
iA + ΓYXZf

Z
iA

)
, (2.75)

such that the vielbeins are covariantly constant.

Dynamics. Now we consider the commutator of supersymmetry on the fermions, which

will determine the equations of motion for the hypermultiplets.

Using (2.62), (2.72) and (2.73), we compute this commutator on the fermions, and find2

[δ(ε1), δ(ε2)]ζ
A =

1

2
∂aζ

Aε̄2γ
aε1 +

1

4
ΓAε̄2ε1 −

1

4
γaΓ

Aε̄2γ
aε1 . (2.76)

The ΓA are the non-closure functions, and define the equations of motion for the

fermions,

ΓA = /DζA +
1

2
WCDB

AζB ζ̄DζC , (2.77)

where we have introduced the covariant derivative with respect to the transformations (2.65)

Dµζ
A ≡ ∂µζ

A + (∂µq
X)ζBωXB

A . (2.78)

By varying the equations of motion under supersymmetry, we derive the corresponding

equations of motion for the scalar fields:

δ̂(ε)ΓA =
1

2
i f iAX εi∆

X , (2.79)

where

∆X = ¤qX −
1

2
ζ̄Bγaζ

D∂aqY f iCY fXiAWBCD
A −

1

4
DYWBCD

Aζ̄EζDζ̄CζBf iYE fXiA , (2.80)

and the covariant laplacian is given by

¤qX = ∂a∂
aqX +

(
∂aq

Y
) (
∂aqZ

)
ΓY Z

X . (2.81)

2To obtain this result, we use Fierz identities expressing that only the cubic fermion combinations of [32,

(A.11)] are independent:

ζ
(B

ζ̄
C
γaζ

D) = −γaζ
(B

ζ̄
C
ζ

D)
.
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In conclusion, the supersymmetry algebra imposes the hypercomplex constraints (2.62)

and the equations of motion (2.77) and (2.80). These form a multiplet, as (2.79) has the

counterpart

δ̂(ε)∆X = − i ε̄i /DΓAfXiA + 2 i ε̄iΓB ζ̄CζDfYBiR
X
Y CD , (2.82)

where the covariant derivative of ΓA is defined similar to (2.78). In the following, we will

derive further constraints on the target space geometry from requiring the presence of

conformal symmetry.

2.3.2 Superconformal symmetry

Now we define transformation rules for the hypermultiplet under the full (rigid) supercon-

formal group. The scalars do not transform under special conformal transformations and

special supersymmetry, but under dilatations and SU(2) transformations, we parametrize

δD(ΛD)q
X = ΛDk

X(q) ,

δSU(2)(Λ
ij)qX = ΛijkXij (q) , (2.83)

for some unknown functions kX(q) and kXij (q).

To derive the appropriate transformation rules for the fermions, we first note that the

hyperinos should be invariant under special conformal symmetry. This is due to the fact

that this symmetry changes the Weyl weight with one. If we realize the commutator (2.24)

on the fermions ζA, we read off the special supersymmetry transformation

δS(η
i)ζA = −kXf iAX ηi . (2.84)

To proceed, we consider the commutator of regular and special supersymmetry (2.20).

Realizing this on the scalars, we determine the expression for the generator of SU(2) trans-

formations in terms of the dilatations and complex structures,

kXij =
1

3
kY JY

X
ij or kαX =

1

3
kY JαY

X . (2.85)

Realizing (2.20) on the hyperinos, we determine the covariant variations

δ̂Dζ
A = 2ΛDζ

A , δ̂SU(2)ζ
A = 0 , (2.86)

and furthermore the commutator (2.20) only closes if we impose

DY k
X =

3

2
δY

X , (2.87)

which also implies

DY k
αX =

1

2
JαY

X . (2.88)

Note that (2.87) is imposed by supersymmetry. In a more usual derivation, where one

considers symmetries of the lagrangian, we would find this constraint by imposing dilatation

invariance of the action, see (2.11). Our result, though, doesn’t require the existence of an
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action. The relations (2.87) and (2.85) further restrict the geometry of the target space,

and it is easy to derive that the Riemann tensor has four zero eigenvectors,

kXRXY Z
W = 0 , kαX RXY Z

W = 0 . (2.89)

Also, under dilatations and SU(2) transformations, the hypercomplex structure is scale

invariant and rotated into itself,

ΛD

(
kZ∂ZJ

α
X
Y − ∂Zk

Y JαX
Z + ∂Xk

ZJαZ
Y
)
= 0 ,

Λβ
(
kβZ∂ZJ

α
X
Y − ∂Zk

βY JαX
Z + ∂Xk

βZJαZ
Y
)
= −εαβγΛβJγX

Y . (2.90)

All these properties are similar to those derived from superconformal hypermultiplets

in four spacetime dimensions [69, 30]. There, the Sp(1) × G `(r,H) sections, or simply,

hypercomplex sections, were introduced

AiB(q) ≡ kXf iBX , (AiB)∗ = AjCEj
iρC

B , (2.91)

which allow for a coordinate independent description of the target space. This means

that all equations and transformation rules for the sections can be written without the

occurrence of the qX fields. For example, the hypercomplex sections are zero eigenvectors

of the G `(r,H) curvature,

AiBWBCD
E = 0 , (2.92)

and have supersymmetry, dilatation and SU(2) transformation laws.

δ̂AiB =
3

2
f iBX δqX = −

3

2
i ε̄iζB +

3

2
ΛDAi

B − Λi
jA

jB , (2.93)

where δ̂ is understood as a covariant variation, in the sense of (2.65).

2.3.3 Symmetries

We now assume the action of a symmetry group on the hypermultiplet. We have no action,

but the ‘symmetry’ operation should leave invariant the set of equations of motion. The

symmetry algebra must commute with the supersymmetry algebra (and later with the full

superconformal algebra). This leads to hypermultiplet couplings to a non-abelian gauge

group G. The symmetries are parametrized by

δGq
X = −gΛI

Gk
X
I (q) ,

δ̂Gζ
A = −gΛI

GtIB
A(q)ζB . (2.94)

The vectors kXI depend on the scalars and generate the algebra of G with structure con-

stants fIJ
K ,

kY[I|∂Y k
X
|J ] = −

1

2
fIJ

KkXK . (2.95)

The commutator of two gauge transformations (2.25) on the fermions requires the following

constraint on the field-dependent matrices tI(q),

[tI , tJ ]B
A = −fIJ

KtKB
A − 2kX[I|DXt|J ]B

A + kXI k
Y
J RXYB

A . (2.96)
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Requiring the gauge transformations to commute with supersymmetry leads to further

relations between the quantities kXI and tIB
A. Vanishing of the commutator on the scalars

yields

tIB
AfXiA = DY k

X
I f

Y
iB . (2.97)

These constraints determine tI(q) in terms of the vielbeins f iAX and the vectors kXI ,

tIA
B =

1

2
fYiADY k

X
I f

iB
X , (2.98)

and furthermore

f
Y (i
A f

j)B
X DY k

X
I = 0 . (2.99)

The relations (2.99) and (2.98) are equivalent to (2.97). We interpret (2.98) as the definition

for tIA
B . The vanishing of an (ij)-symmetric part in an equation as (2.99) can be expressed

as the vanishing of the commutator of DY k
X
I with the complex structures:3

(
DXk

Y
I

)
JαY

Z = JαX
Y
(
DY k

Z
I

)
. (2.100)

Extracting affine connections from this equation, it can be written as

(LkI
Jα)X

Y ≡ kZI ∂ZJ
α
X
Y − ∂Zk

Y
I J

α
X
Z + ∂Xk

Z
I J

α
Z
Y = 0 . (2.101)

The left-hand side is the Lie derivative of the complex structure in the direction of the

vector kI . In part B.5 of the appendix, it is mentioned that (2.101) is a special case of the

statement that the vector kI normalizes the hypercomplex structures. The latter would

allow that this Lie derivative is proportional to a complex structure. Killing vectors which

normalize the hypercomplex structure can be decomposed in an SU(2) part and a G `(r,H)

part. The vanishing of this Lie derivative, or (2.99), is expressed by saying that the gauge

transformations act triholomorphic. Thus, it says that all the symmetries are embedded in

G `(r,H).

Vanishing of the gauge-supersymmetry commutator on the fermions requires

DY tIA
B = kXI RY XA

B . (2.102)

Using (2.97) this implies a new constraint,

DXDY k
Z
I = RXWY

ZkWI . (2.103)

Note that this equation is in general true for any Killing vector of a metric. As we have no

metric here, we could not rely on this fact, but here the algebra imposes this equation. It

turns out that (2.99) and (2.103) are sufficient for the full commutator algebra to hold. In

particular, (2.102) follows from (2.103), using the definition of t as in (2.98), and (2.72).

A further identity can be derived: substituting (2.102) into (2.96) one gets

[tI , tJ ]B
A = −fIJ

KtKB
A − kXI k

Y
J RXY B

A . (2.104)

3This can be seen directly from lemma 2 in appendix B.
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This identity can also be obtained from substituting (2.98) in the commutator on the left

hand side, and then using (2.95), (2.99), (2.103) and (2.72).

The group of gauge symmetries should also commute with the superconformal algebra,

in particular with dilatations and SU(2) transformations. This leads to

kY DY k
X
I =

3

2
kXI , kαY DY k

X
I =

1

2
kYI J

α
Y
X , (2.105)

coming from the scalars, and there are no new constraints from the fermions or from other

commutators. Since DY k
X
I commutes with JαY

X , the second equation in (2.105) is a

consequence of the first one.

In the above analysis, we have taken the parameters ΛI to be constants. In the

following, we also allow for local gauge transformations. The gauge coupling is done by

introducing vector multiplets and defining the covariant derivatives

Dµq
X ≡ ∂µq

X + gAI
µk

X
I ,

Dµζ
A ≡ ∂µζ

A + ∂µq
XωXB

AζB + gAI
µtIB

AζB . (2.106)

The commutator of two supersymmetries should now also contain a local gauge transfor-

mation, in the same way as for the multiplets of the previous sections, see (2.30). This

requires an extra term in the supersymmetry transformation law of the fermion,

δ̂(ε)ζA =
1

2
i /DqXf iAX εi +

1

2
gσIkXI f

A
iXε

i . (2.107)

With this additional term, the commutator on the scalars closes, whereas on the fermions,

it determines the equations of motion

ΓA ≡ /DζA +
1

2
WBCD

Aζ̄CζDζB − g( i kXI f
A
iXψ

iI + i ζBσItIB
A) = 0 , (2.108)

with the same conventions as in (2.76).

Acting on ΓA with supersymmetry determines the equation of motion for the scalars

∆X = ¤qX −
1

2
ζ̄Bγaζ

DDaqY f iCY fXiAWBCD
A −

1

4
DYWBCD

Aζ̄EζDζ̄CζBf iYE fXiA −

− g
(
2 i ψ̄iIζBtIB

AfXiA − k
Y
I JY

X
ijY

ijI
)
+ g2σIσJDY k

X
I k

Y
J . (2.109)

The first line is the same as in (2.80), the second line contains the corrections due to the

gauging. The gauge-covariant laplacian is here given by

¤qX = ∂aD
aqX + gDaq

Y ∂Y k
X
I A

aI + Daq
Y DaqZΓXY Z . (2.110)

The equations of motions ΓA and ∆X still satisfy the same algebra with (2.79) and (2.82).

3. Rigid superconformal actions

In this section, we will present rigid superconformal actions for the multiplets discussed

in the previous section. We will see that demanding the existence of an action is more

restrictive than only considering equations of motion. For the different multiplets, we find

that new geometric objects have to be introduced.
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3.1 Vector multiplet action

The coupling of Poincaré-supergravity to n vector multiplets (having n scalars ϕx) is com-

pletely determined by an (n + 1)-dimensional constant symmetric tensor CIJK [3]. The

reason for the difference in the number of scalars and the rank of CIJK is that the graviton

multiplet also contains a vector field called the graviphoton.

The tensor CIJK appears directly in the A ∧ F ∧ F Chern–Simons couplings, and

indirectly in all other terms of the action.

In particular, the manifold parametrized by the scalars ϕx of the vector multiplets can

be viewed as an n-dimensional hypersurface in an (n+ 1)-dimensional space parametrized

by n+ 1 coordinates σI(ϕx):

CIJKσ
IσJσK = 1 . (3.1)

The resulting geometry goes under the name of “very special geometry”. For every value

of n there are many different “very special real” manifolds: a classification of such spaces

that are homogeneous was given in [56]. This classification includes the previously found

symmetric spaces [3, 70].

From the viewpoint of superconformal symmetry, the equation (3.1) looks like a gauge-

fixing condition for dilatation invariance. Indeed, it turns out that the coupling of n vector

multiplets (with n scalars σI) in rigid supersymmetry (or in conformal supergravity as we

will give the generalization in section 4) is also completely determined by the tensor CIJK ,

but in contrast to the case of Poincaré supergravity, this tensor will multiply the complete

action, not just the Chern–Simons term.

The rigidly superconformal invariant action describing n vector multiplets was obtained

from tensor calculus using an intermediate linear multiplet in [35]. The abelian part can be

obtained by just taking the (cubic) action of one vector multiplet as given in [32], adding

indices I, J,K on the fields and multiplying with the symmetric tensor CIJK. For the

non-abelian case, we need conditions expressing the gauge invariance of this tensor:

fI(J
HCKL)H = 0 . (3.2)

Moreover one has to add a few more terms, e.g. to complete the Chern–Simons term to its

non-abelian form. This leads to the action

Lvector =
[(
−
1

4
F I
µνF

µνJ −
1

2
ψ̄I /DψJ −

1

2
Daσ

IDaσJ + Y I
ijY

ijJ

)
σK −

−
1

24
εµνλρσAI

µ

(
F J
νλF

K
ρσ +

1

2
g[Aν , Aλ]

JFK
ρσ +

1

10
g2[Aν , Aλ]

J [Aρ, Aσ]
K

)
−

−
1

8
i ψ̄Iγ · F JψK −

1

2
i ψ̄iIψjJY K

ij +
1

4
i gψ̄LψHσIσJfLH

K
]
CIJK . (3.3)

The equations of motion for the fields of the vector multiplet following from the ac-

tion (3.3) are

0 = LijI = ϕiI = Ea
I = NI , (3.4)

– 24 –



J
H
E
P
1
0
(
2
0
0
2
)
0
4
5

where we have defined

LijI ≡ CIJK

(
2σJY ijK −

1

2
i ψ̄iJψjK

)
,

ϕiI ≡ CIJK

(
iσJ /DψiK +

1

2
i ( /DσJ)ψiK + Y ikJψKk −

1

4
γ · F JψiK

)
−

− gCIJKfLH
KσJσLψiH ,

EaI ≡ CIJK

[
Db

(
σJFba

K +
1

4
i ψ̄Jγbaψ

K

)
−

1

8
εabcdeF

bcJF deK

]
−

−
1

2
gCJKLfIH

JσK ψ̄Lγaψ
H − gCJKHfIL

JσKσLDaσ
H ,

NI ≡ CIJK

(
σJ¤σK +

1

2
DaσJDaσ

K −
1

4
F J
abF

abK −
1

2
ψ̄J /DψK + Y ijJYij

K

)
+

+
1

2
i gCIJKfLH

KσJ ψ̄LψH . (3.5)

We have given these equations of motion the names Lij
I , φ

i
I , EaI , NI since they form a linear

multiplet in the adjoint representation of the gauge group for which the transformation rules

have been given in (A.1).

3.2 The vector-tensor multiplet action

We will now generalize the vector action (3.3) to an action for the vector-tensor multiplets

(with n vector multiplets and m tensor multiplets) discussed in section 2.2.2.

The supersymmetry transformation rules for the vector-tensor multiplet (2.34) were

obtained from those for the vector multiplet (2.29) by replacing all contracted indices by

the extended range of tilde indices. In addition, extra terms of O(g) had to be added to

the transformation rules. Similar considerations apply to the generalization of the action,

as we will see below.

To obtain the generalization of the Chern-Simons (CS) term, it is convenient to rewrite

this CS-term as an integral in six dimensions which has a boundary given by the five-

dimensional Minkowski spacetime. The six-form appearing in the integral is given by

Ivector = CIJKF
IF JFK , (3.6)

where we have used form notation. This six-form is both gauge-invariant and closed, by

virtue of (3.2) and the Bianchi identities (2.28). It can therefore be written as the exterior

derivative of a five-form which is gauge-invariant up to a total derivative. The spacetime

integral over this five-form is the CS-term given in the second line of (3.3).

We now wish to generalize (3.6) to the case of vector-tensor multiplets. It turns out

that the generalization of (3.6) is somewhat surprising. We find

Ivec−tensor = C
ĨJ̃K̃

HĨHJ̃HK̃ −
3

g
ΩMNDB

MDBN . (3.7)

The tensor ΩMN is antisymmetric and invertible, and it restricts the number of tensor

multiplets to be even

ΩMN = −ΩNM , ΩMPΩ
MR = δP

R . (3.8)
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The covariant derivative of the tensor field is

DλB
N
ρσ = ∂λB

N
ρσ + g AI

λtIJ̃
NHJ̃

ρσ

= ∂λB
N
ρσ + g AI

λtIJ
NF J

ρσ + g AI
λtIP

NBP
ρσ . (3.9)

When this is reduced to 5 dimensions, one of the H factors of the first term of (3.7)

should correspond to a vector field strength F I in order that it can be written as a 5-form

AIHJ̃HK̃ . Thus, the components of C can have only three different forms, namely CIJK ,

CIJM and CIMN (and permutations).

To see why (3.7) is a closed six-form, we write out the first term of (3.7)

C
ĨJ̃K̃

HĨHJ̃HK̃ = CIJKF
IF JFK + 3CIJMF

IF JBM + 3CIMNF
IBMBN . (3.10)

Since the BM tensors in (3.10) do not satisfy a Bianchi identity, we also need the second

term in (3.7) to render it a closed six-form. This requirement of closure leads to the

following relations between the C and Ω tensors:

CIJM = t(IJ)
NΩNM , CIMN =

1

2
tIM

PΩPN . (3.11)

We stress that the tensor C
ĨJ̃K̃

is not a fundamental object: the essential data for the

vector-tensor multiplet are the representation matrices t
IJ̃

K̃ , the Yang-Mills components

CIJK , and the symplectic matrix ΩMN . The tensor components of the C tensor are derived

quantities, and we can summarize (3.11) as

C
MJ̃K̃

= t
(J̃K̃)

PΩPM . (3.12)

From (3.11), we deduce that the second term of (3.10) only depends on the off-diagonal

(between vector and tensor multiplets) transformations. The first term of (3.10) will induce

the usual five-dimensional CS-term. The generalized CS-term induced by the third term

of (3.10) was given in [1]. With our extension to also allow for the off-diagonal term

in (2.39), we also get CS-terms induced by the CIJM components, which were not present

in [1].

Gauge invariance of the first term of (3.7) requires that the tensor C satisfies a modified

version of (3.2)

fI(J
HCKL)H = tI(J

M tKL)
NΩMN . (3.13)

In addition to this, the second term of (3.7) is only gauge invariant if the tensor Ω satisfies

tI[M
PΩN ]P = 0 , (3.14)

such that the last one of (3.11) is consistent with the symmetry (MN). The two condi-

tions (3.13) and (3.14) combined with the definition (3.12) imply the following generaliza-

tion of (3.2)

t
I(J̃

M̃C
K̃L̃)M̃

= 0 . (3.15)

The superconformal action for the combined system of m = 2k tensor multiplets and

n vector multiplets contains the CS-term induced by (3.7) and the generalization of the
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vector action (3.3) to the extended range of indices. Some extra terms are necessary to

complete it to an invariant action: we need mass terms and/or Yukawa coupling for the

fermions at O(g), and a scalar potential at O(g2). We thus find the following action:

Lvec−tensor=

(
−
1

4
HĨ
µνH

µνJ̃ −
1

2
ψ̄Ĩ /DψJ̃ −

1

2
Daσ

ĨDaσJ̃ + Y Ĩ
ijY

ijJ̃

)
σK̃C

ĨJ̃K̃
+

+
1

16g
εµνλρσΩMNB

M
µν

(
∂λB

N
ρσ + 2gtIJ

NAI
λF

J
ρσ + gtIP

NAI
λB

P
ρσ

)
−

−
1

24
εµνλρσCIJKA

I
µ

(
F J
νλF

K
ρσ + fFG

JAF
ν A

G
λ

(
−
1

2
gFK

ρσ+
1

10
g2fHL

KAH
ρ A

L
σ

))
−

−
1

8
εµνλρσΩMN tIK

M tFG
NAI

µA
F
ν A

G
λ

(
−
1

2
gFK

ρσ +
1

10
g2fHL

KAH
ρ A

L
σ

)
+

+

(
−
1

8
i ψ̄Ĩγ · HJ̃ψK̃ −

1

2
i ψ̄iĨψjJ̃Y K̃

ij

)
C
ĨJ̃K̃

+

+
1

4
i gψ̄ĨψJ̃σK̃σL̃

(
t
[ĨJ̃]

M̃C
M̃K̃L̃

− 4t
(ĨK̃)

M̃C
M̃J̃L̃

)
−

−
1

2
g2σKCKMN tIL̃

MσIσL̃t
JP̃

NσJσP̃ . (3.16)

To check the supersymmetry of this action, one needs all the relations between the various

tensors given above. Another useful identity implied by the previous definitions is

t(ĨJ̃)
MC

K̃L̃M
= −t(K̃L̃)

MC
ĨJ̃M

. (3.17)

The terms in the action containing the fields of the tensor multiplets can also be

obtained from the field equations (2.42). They are now related to the action as

δSvec−tensor
δψ̄iM

= iϕNi ΩNM , (3.18)

and the remaining bosonic terms can be obtained from comparing with NM in (2.45). One

may then further check that also the field equations (2.37) and (2.38) follow from this

action.

Note however that the equations of motion for the vector multiplet fields, obtained from

this action, are similar to those given in (3.5), but with the contracted indices running over

the extended range of vector and tensor components. Furthermore, the AI
µ equation of

motion gets corrected by a term proportional to the self-duality equation for BM
µν :

δSvec−tensor
δAI

a

= Ea
I +

1

12
gεabcdeAJ

bEcde
M tJI

NΩMN . (3.19)

Finally, we remark that the action (3.16) is invariant under supersymmetry for the

completely general form (2.39) of the representation matrices (tI)J̃
K̃ .

We thus conclude that in order to write down a superconformal action for the vector-

tensor multiplet, we need to introduce another geometrical object, namely a gauge-invariant

anti-symmetric invertible tensor ΩMN . This symplectic matrix will restrict the number of

tensor multiplets to be even. We can still allow the transformations to have off-diagonal
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terms between vector and tensor multiplets, if we adapt (3.2) to (3.15). In this way, we

have constructed more general matter couplings than were known so far. Terms of the form

A ∧ F ∧ B did not appear in previous papers. We see that such terms appear generically

in our lagrangian by allowing for these off-diagonal gauge transformations for the tensor

fields. In some cases these may disappear after field redefinitions.

3.3 The hypermultiplet

Until this point, the equations of motion we derived, found their origin in the fact that

we had an open superconformal algebra. The non-closure functions ΓA, together with

their supersymmetric partners ∆X yielded these equations of motion. We discovered a

hypercomplex scalar manifold M, where ΓXY
Z was interpreted as an affine connection.

We also needed a G `(r,H)-connection ωXA
B on a vector bundle and discovered that the

manifold also admitted a trivial SU(2)-vector bundle.

Now, we will introduce an action to derive the field equations of the hypermultiplet.

An important point to note is that the necessary data for the scalar manifold we had in

the previous section, are not sufficient any more. This is not specific to our setting, but is

a general property of non-linear sigma models.

In such models, the kinetic term for the scalars is multiplied by a scalar-dependent

symmetric tensor gαβ(φ),

S = −
1

2

∫
dDxgαβ(φ)∂µφ

α∂µφβ , (3.20)

in which α and β run over the dimensions of the scalar manifold. The tensor g is interpreted

as the metric on the target space M. As the field equations for the scalars should now

be also covariant with respect to coordinate transformations on the target manifold, the

connection on the tangent bundle TM should be the Levi-Civita connection. Only in that

particular case, the field equations for the scalars will be covariant. In other words, in

¤φα + · · · = 0 the Levi-Civita connection on TM will be used in the covariant box.

To conclude, we will need to introduce a metric on the scalar manifold, in order to be

able to write down an action. This metric will also restrict the possible target spaces for

the theory.

Observe that most steps in this section do not depend on the use of superconformal

symmetry.4 Only at the end of section 3.3.2, we make explicitly use of the this symmetry.

3.3.1 Without gauged isometries

To start with, we take the non-closure functions ΓA to be proportional to the field equations

for the fermions ζA. In other words, we ask

δShyper

δζ̄A
= 2CABΓ

B . (3.21)

4Of course, the form of the field equations does reflect the superconformal symmetry.
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In general, the tensor CAB could be a function of the scalars and bilinears of the

fermions. If we try to construct an action with the above Ansatz, it turns out that the

tensor has to be anti-symmetric in AB and

δCAB
δζC

= 0 , (3.22)

DXCAB = 0 . (3.23)

This means that the tensor does not depend on the fermions and is covariantly constant.5

This tensor CAB will be used to raise and lower indices according to the NW–SE

convention similar to εij :

AA = ABCBA , AA = CABAB , (3.24)

where εij and CAB for consistency should satisfy

εikε
jk = δi

j , CACC
BC = δA

B . (3.25)

We may choose CAB to be constant. To prove this, we look at the integrability condi-

tion for (3.23)

[DX ,DY ]CAB = 0 = −2RXY [A
CCB]C . (3.26)

This implies that the anti-symmetric part of the connection ωXAB ≡ ωXA
CCCB is pure

gauge, and can be chosen to be zero. If we do so, the covariant constancy condition for CAB

reduces to the equation that CAB is just constant. For this choice, the connection ωXAB is

symmetric, so the structure group G `(r,H) breaks to USp(2r − 2p, 2p). The signature is

the signature of dCB , which is defined as CAB = ρA
CdCB where ρA

C was given in (2.58).

However, we will allow CAB also to be non-constant, but covariantly constant.

We now construct the metric on the scalar manifold as

gXY = f iAX CABεijf
jB
Y . (3.27)

The above-mentioned requirement that the Levi-Civita connection should be used (as

ΓXY
Z) is satisfied due to (3.23). Indeed, this guarantees that the metric is covariantly

constant, such that the affine connection is the Levi-Civita one. On the other hand we

have seen already that for covariantly constant complex structures we have to use the

Obata connection. Hence, the Levi-Civita and Obata connection should coincide, and this

is obtained from demanding (3.23) using the Obata connection. This makes us conclude

that we can only write down an action for a hyperkähler scalar manifold.

We can now write down the action for the rigid hypermultiplets. It has the following

form:

Shyper =

∫
d5x

(
−
1

2
gXY ∂aq

X∂aqY + ζ̄A /Dζ
A −

1

4
WABCD ζ̄

AζB ζ̄CζD
)
, (3.28)

5This can also easily be seen by using the Batalin-Vilkovisky formalism.
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where the tensor WABCD can be proven to be completely symmetric in all of its indices

(see appendix B). The field equations derived from this action are

δShyper

δζ̄A
= 2CABΓ

B ,

δShyper
δqX

= gXY∆
Y − 2ζ̄AΓ

BωXB
A . (3.29)

Also remark that due to the introduction of the metric, the expression of ∆X simplifies to

∆X = ¤qX − ζ̄A/∂qY ζBRX
Y AB −

1

4
DXWABCD ζ̄

AζBζCζD . (3.30)

Let us mention that we could also have followed a slightly different route. We could

have introduced the metric gXY first, and shown that the connection ΓXY
Z is the Levi-

Civita connection with respect to this metric, as pointed out in the introduction of this

section. Then, the identification of the vielbeins fXiA of the tangent bundle TM with the

G `(r,H) ⊗ SU(2) vector bundle would enable us to find a standard antisymmetric tensor

C ⊗ ε on the latter bundle. As the metric is covariantly constant, this should be inherited

by C⊗ε, reflecting the possibility to choose it to be constant. The result of the introduction

of a metric is that the scalar manifold should be hyperkähler.

Conformal invariance. Due to the presence of the metric, the condition for the homo-

thetic Killing vector (2.87) implies that kX is the derivative of a scalar function as in (2.10).

This scalar function χ(q) is called the hyperkähler potential [71, 63, 30]. It determines the

conformal structure, but should be restricted to

DXDY χ =
3

2
gXY . (3.31)

The relation with the homothetic Killing vector is

kX = ∂Xχ , χ =
1

3
kXk

X . (3.32)

Note that this implies that, when χ and the complex structures are known, one can compute

the metric with (3.31), using the formula for the Obata connection (2.74).

3.3.2 With gauged isometries

With a metric, the symmetries of section 2.3.3 should be isometries, i.e.

DXkY I + DY kXI = 0 . (3.33)

This makes the requirement (2.103) superfluous, but we still have to impose the triholo-

morphicity expressed by either (2.99) or (2.100) or (2.101).

In order to integrate the equations of motion to an action we have to define (locally)

triples of ‘moment maps’, according to

∂XP
α
I = −

1

2
JαXY k

Y
I . (3.34)

The integrability condition that makes this possible is the triholomorphic condition.
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In the kinetic terms of the action, the derivatives should now be covariantized with

respect to the new transformations. We are also forced to include some new terms propor-

tional to g and g2

Sghyper =

∫
d5x

(
−
1

2
gXY Daq

XDaqY + ζ̄A /Dζ
A −

1

4
WABCD ζ̄

AζB ζ̄CζD − (3.35)

− g
(
2 i kXI f

A
iX ζ̄Aψ

iI + i σItIB
Aζ̄Aζ

B − 2PIijY
Iij
)
− g2

1

2
σIσJkXI kJX

)
,

[where the covariant derivatives D now also include gauge-covariantization proportional to

g as in (2.106)], while the field equations have the same form as in (3.29). Supersymmetry

of the action imposes

kXI J
α
XY k

Y
J = 2fIJ

KPα
K . (3.36)

As only the derivative of P appears in the defining equation (3.34), one may add an ar-

bitrary constant to P . But that changes the right-hand side of (3.36). One should then

consider whether there is a choice of these coefficients such that (3.36) is satisfied. This

is the question about the center of the algebra, which is discussed in [72, 73]. For simple

groups there is always a solution.6 For abelian theories the constant remains undetermined.

This free constant is the so-called Fayet–Iliopoulos term.

In a conformal invariant theory, the Fayet–Iliopoulos term is not possible. Indeed,

dilatation invariance of the action needs

3Pα
I = kX∂XP

α
I . (3.37)

Thus, Pα
I is completely determined [using (3.34) or (2.105)] as (see also [74])

−6Pα
I = kXJαXY k

Y
I = −

2

3
kXkZJαZ

Y DY kIX . (3.38)

The proof of the invariance of the action under the complete superconformal group, uses

the equation obtained from (2.105) and (3.34):

kXαDXk
Y
I = ∂Y Pα

I . (3.39)

If the moment map P α
I has the value that it takes in the conformal theory, then (3.36) is

satisfied due to (2.95). Indeed, one can multiply that equation with kXk
ZJαZ

WDW and

use (2.100), (2.103) and (2.89). Thus, in the superconformal theory, the moment maps are

determined and there is no further relation to be obeyed, i.e. the Fayet–Iliopoulos terms of

the rigid theories are absent in this case.

To conclude, isometries of the scalar manifold that commute with dilatations,

see (2.105), can be gauged. The resulting theory has an extra symmetry group G, its

algebra is generated by the corresponding Killing vectors.

6We thank Gary Gibbons for a discussion on this subject.
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3.4 Potential

We complete this section with a discussion of the scalar potential for the general matter-

coupled (rigid) superconformal theory. Gathering together our results (3.16) and (3.35)

the total lagrangian describing the most general couplings of vector/tensor multiplets to

hypermultiplets with rigid superconformal symmetry is

Ltotal = Lvec−tensor + L
g
hyper . (3.40)

From this expression the explicit form of the total scalar potential can be read off as

V (σĨ , qX) = σK̃C
ĨJ̃K̃

Y Ĩ
ijY

ij J̃ +
1

2
g2σKCKMN tIL̃

MσIσL̃t
JP̃

NσJσP̃ +
1

2
g2σIσJkXI kJX ,

(3.41)

where

Y ijJ̃C
IJ̃K̃

σK̃ = −gP ij
I , Y ijJ̃C

MJ̃K̃
σK̃ = 0 . (3.42)

Note that the auxiliary field Y has been eliminated here. Secondly, written as in (3.41),

the potential does not contain the auxiliary field Y Ĩ any more, but rather its solution of

the field equations. This explains the apparent wrong sign in the Y I
ijY

ij J term, and the

field equation made use of the term 2gPIijY
Iij in (3.35). In fact, the first term of (3.41) is

equal to −gPIijY
Iij .

This potential reflects the general form in supersymmetry that it is the square of the

transformations of the fermions, where the definition of ‘square’ uses the fermion kinetic

terms. The first term is the square of the transformations of the gauginos, the second term

depends on the transformations of the fermionic partners of the antisymmetric tensors, and

the last one is the square of the transformation law of the hyperinos. Note that off-diagonal

terms between the contributions of Y ij and the t
IL̃

MσIσL̃ terms do not survive as these

would be proportional to εijYij = 0.

The difference between our potential (3.41) and the one in a rigid limit of [2], is the

generalization to off-diagonal couplings of vectors and tensor multiplets in the first two

terms.

Summarizing, in this section the actions of rigid superconformal vector/tensor-hyper-

multiplet couplings have been constructed. The full answer is (3.40). We found that

the existence of an action requires the presence of additional tensorial objects. Table 2

gives an overview of what are the independent objects to know, either to determine the

transformation laws, or to determine the action.

In the next section we generalize our results to the local case.

4. Local superconformal multiplets

We are now ready to perform the last step in our programme, i.e. extend the supersymmetry

to a local conformal supersymmetry. We will make use here of the off-shell 32 + 32 Weyl

multiplet constructed in [32, 33], and in particular of the ‘standard’ Weyl multiplet. In

fact, there exist two Weyl multiplets: the ‘dilaton’ Weyl multiplet and the ‘standard’ Weyl

multiplet. They contain the same gauge fields but differ in their matter fields. We restrict
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ALGEBRA (no action) ACTION

multiplets objects Def/restriction objects Def/restriction

Vect. f[IJ ]
K Jacobi identities C(IJK) fI(J

HCKL)H = 0N

Vect./Tensor
(tI)J̃

K̃

Ĩ=(I,M)

[tI , tJ ] = −fIJ
KtK

tIJ
K = fIJ

K , tIM
J = 0

Ω[MN ]

invertible

fI(J
HCKL)H=tI(J

M tKL)
NΩMN

tI[M
PΩN ]P=0

Hyper fX
iA

invertible and real using ρ

Nijenhuis condition:

NXY
Z = 0

C[AB] DXCAB = 0

Hyper +

gauging
kXI

DXDY k
Z
I = RXWY

ZkWI J

kY[I|∂Y k
X
|J ] = −

1
2fIJ

KkXK

LkI
Jα = 0 J

Pα
I N

DXkY I + DY kXI = 0

∂XP
α
I = −12J

α
XY k

Y
I N

kXI J
α
XY k

Y
J = 2fIJ

KPα
KN

Hyper +

conformal
kX J DY k

X = 3
2δY

X J χ DXDY χ = 3
2gXY

Hyper +

conformal +

gauged

kY DY k
X
I = 3

2k
X
I

Table 2: Various matter couplings with or without action. We indicate which are the geometrical

objects that determine the theory and what are the independent constraints. The symmetries of the

objects are already indicated when they appear first. In general, the equations should also be valid

for the theories in the rows below (apart from the fact that ‘hyper+gauging’ and ‘hyper+conformal’

are independent, but both are used in the lowest row). However, the symbol N indicates that these

equations are not to be taken over below. E.g. the moment map P α
I itself is completely determined

in the conformal theory, and it should thus not any more be given as an independent quantity. For

the rigid theory without conformal invariance, only constant pieces can be undetermined by the

given equations, and are the Fayet–Iliopoulos terms. On the other hand, the equations indicated

by J have not to be taken over for the theories with an action, as they are then satisfied due to the

Killing equation or are defined by χ.

ourselves here to the standard Weyl multiplet, due to two considerations. First, it turns out

that with the standard Weyl multiplet we already find a local generalization for any rigid

theory. Second, the experience in other similar situations has shown that two different sets

of auxiliary fields for theories with the same rigid limit do not lead to physically different

results. This has e.g. been investigated in full detail for the old minimal, new minimal and

non-minimal set of auxiliary fields for N = 1, D = 4 in [75]. We therefore expect that the

couplings to the dilaton Weyl multiplet are only those obtained from the replacement of

the fields of the standard Weyl multiplet by their functions in terms of the dilaton Weyl

multiplet given in [32, eq. (3.14)]. Whether the conformal gauge-fixing program will also

be insensitive to the choice of Weyl multiplet, remains to be seen. For instance in [33], the

connection between the dilaton Weyl multiplet and an inequivalent set of auxiliary fields

for Poincaré supergravity [76] was discussed.
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Field # Gauge SU(2) w

Elementary gauge fields

eµ
a 9 P a 1 −1

bµ 0 D 1 0

V
(ij)
µ 12 SU(2) 3 0

ψiµ 24 Qi
α 2 −12

Dependent gauge fields

ωµ
ab − M [ab] 1 0

fµ
a − Ka 1 1

φiµ − Siα 2 1
2

Matter fields

T[ab] 10 1 1

D 1 1 2

χi 8 2 3
2

Table 3: Fields of the standard Weyl multiplet. The symbol # indicates the off-shell degrees of

freedom. The first block contains the (bosonic and fermionic) gauge fields of the superconformal

algebra. The fields in the middle block are dependent gauge fields. In the lower block are the extra

matter fields that appear in the standard Weyl multiplet.

We have listed all the gauge fields and matter fields of the standard Weyl multiplet in

table 3. For the full details of the standard Weyl multiplet, we refer to [32].

The procedure for extending the rigid superconformal transformation rules for the

various matter multiplets is to introduce covariant derivatives with respect to the super-

conformal symmetries. These derivatives contain the superconformal gauge fields which,

in turn, will also transform to additional matter fields (this is explained in detail in [32]).

Since in the previous sections we have explained most of the subtleties concerning

the possible geometrical structures, we can be brief here. We will obtain our results in

two steps. First, we require that the local superconformal commutator algebra, as it

is realized on the standard Weyl multiplet (see [32, eqs. (4.3)–(4.6)]) is also realized on

the matter multiplets (with possible additional transformations under which the fields of

the standard Weyl multiplet do not transform, and possibly field equations if the matter

multiplet is on-shell). Note that this local superconformal algebra is a modification of the

rigid superconformal algebra (2.21), (2.19) where all modifications involve the fields of the

standard Weyl multiplet.

Now we will apply a standard Noether procedure to extend the rigid supersymmetric

actions to a locally supersymmetric one. This will introduce the full complications of

coupling the matter multiplets to conformal supergravity.
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4.1 Vector-tensor multiplet

The local supersymmetry rules are given by

δAI
µ =

1

2
ε̄γµψ

I −
1

2
i σI ε̄ψµ ,

δBM
ab = −ε̄γ[aDb]ψ

M + i gε̄γabt(J̃K̃)
MσJ̃ψK̃ + i η̄γabψ

M ,

δY ijĨ = −
1

2
ε̄(i /Dψj)Ĩ +

1

2
i ε̄(iγ · Tψj)Ĩ − 4 i σĨ ε̄(iχj) −

−
1

2
i gε̄(i

(
t[J̃K̃]

Ĩ − 3t(J̃K̃)
Ĩ
)
σJ̃ψj)K̃ +

1

2
i η̄(iψj)Ĩ ,

δψiĨ = −
1

4
γ · ĤĨεi −

1

2
i /DσĨεi − Y ijĨεj + σĨγ · Tεi +

1

2
gt
(J̃K̃)

ĨσJ̃σK̃εi + σĨηi ,

δσĨ =
1

2
i ε̄ψĨ . (4.1)

The covariant derivatives are given by

Dµσ
Ĩ = Dµσ

Ĩ −
1

2
i ψ̄µψ

Ĩ ,

Dµσ
Ĩ = (∂µ − bµ)σ

Ĩ + gt
JK̃

ĨAJ
µσ

K̃ ,

Dµψ
iĨ = Dµψ

iĨ +
1

4
γ · ĤĨψiµ +

1

2
i /DσĨψiµ + Y ijĨψµ j − σ

Ĩγ · Tψiµ −

−
1

2
gt(J̃K̃)

ĨσJ̃σK̃ψiµ − σ
Ĩφiµ ,

Dµψ
iĨ = (∂µ −

3

2
bµ +

1

4
γabωµ

ab)ψiĨ − V ij
µ ψ

Ĩ
j + gt

JK̃
ĨAJ

µψ
iK̃ . (4.2)

The covariant curvature ĤĨ
µν should be understood as having components (F̂ I

µν , Bµν) and

F̂ I
µν = 2∂[µA

I
ν] + gfJK

IAJ
µA

K
ν − ψ̄[µγν]ψ

I +
1

2
i σI ψ̄[µψν] . (4.3)

The locally superconformal constraints needed to close the algebra are given by the

following extensions of (2.37) and (2.38) (which are non-zero only for Ĩ in the tensor

multiplet range)

LijM ≡ t(J̃K̃)
M

(
2σJ̃Y ijK̃ −

1

2
i ψ̄iJ̃ψjK̃

)
= 0 ,

EM
µνλ ≡

3

g
D[µBνλ]

M − εµνλρσt(J̃K̃)
M

(
σJ̃ĤρσK̃ − 8σJ̃σK̃T ρσ +

1

4
i ψ̄J̃γρσψK̃

)
−

−
3

2
ψ̄Mγ[µR̂νλ](Q)

= 0 . (4.4)

Analogously to subsection 2.2.2, the full set of constraints could be obtained by varying

these constraints under supersymmetry.
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The action, invariant under local superconformal symmetry, can be obtained by re-

placing the rigid covariant derivatives in (3.16) by the local covariant derivatives (4.2)

and adding extra terms proportional to gravitinos or matter fields of the Weyl multiplet,

determined by supersymmetry:

e−1Lconfvec−ten=

[(
−
1

4
ĤĨ
µνĤ

µνJ̃−
1

2
ψ̄Ĩ /DψJ̃+

1

3
σĨ¤cσJ̃+

1

6
Daσ

ĨDaσJ̃+Y Ĩ
ijY

ijJ̃

)
σK̃−

−
4

3
σĨσJ̃σK̃

(
D+

26

3
TabT

ab

)
+4σĨσJ̃ĤK̃

abT
ab+

+

(
−
1

8
i ψ̄Ĩγ · ĤJ̃ψK̃−

1

2
i ψ̄iĨψjJ̃Y K̃

ij + i σĨ ψ̄J̃γ · TψK̃−8 i σĨσJ̃ ψ̄K̃χ

)
+

+
1

6
σĨ ψ̄µγ

µ

(
i σJ̃ /DψK̃+

1

2
i /DσJ̃ψK̃−

1

4
γ·ĤJ̃ψK̃+2σJ̃γ·TψK̃−8σJ̃σK̃χ

)
−

−
1

6
ψ̄aγbψ

Ĩ
(
σJ̃ĤabK̃−8σJ̃σK̃T ab

)
−

1

12
σĨ ψ̄λγ

µνλψJ̃ĤK̃
µν+

+
1

12
i σĨ ψ̄aψb

(
σJ̃ĤabK̃−8σJ̃σK̃T ab

)
+

1

48
iσĨσJ̃ ψ̄λγ

µνλρψρĤ
K̃
µν−

−
1

2
σĨ ψ̄iµγ

µψjJ̃Y K̃
ij +

1

6
iσĨσJ̃ ψ̄iµγ

µνψjνY
K̃
ij −

1

24
i ψ̄µγνψ

Ĩ ψ̄J̃γµνψK̃+

+
1

12
i ψ̄iµγ

µψjĨ ψ̄J̃i ψ
K̃
j −

1

48
σĨ ψ̄µψνψ̄

J̃γµνψK̃+
1

24
σĨ ψ̄iµγ

µνψjν ψ̄
J̃
i ψ

K̃
j −

−
1

12
σĨ ψ̄λγ

µνλψJ̃ ψ̄µγνψ
K̃+

1

24
iσĨσJ̃ ψ̄λγ

µνλψK̃ ψ̄µψν

+
1

48
i σĨσJ̃ ψ̄λγ

µνλρψρψ̄µγνψ
K̃+

1

96
σĨσJ̃σK̃ψ̄λγ

µνλρψρψ̄µψν

]
C
ĨJ̃K̃

+

+
1

16g
e−1εµνλρσΩMNB

M
µν

(
∂λB

N
ρσ+2gtIJ

NAI
λF

J
ρσ+gtIP

NAI
λB

P
ρσ

)
−

−
1

24
e−1εµνλρσCIJKA

I
µ

(
F J
νλF

K
ρσ+fFG

JAF
ν A

G
λ

(
−
1

2
gFK

ρσ+
1

10
g2fHL

KAH
ρ A

L
σ

))
−

−
1

8
e−1εµνλρσΩMN tIK

M tFG
NAI

µA
F
ν A

G
λ

(
−
1

2
gFK

ρσ+
1

10
g2fHL

KAH
ρ A

L
σ

)
+

+
1

4
i gψ̄ĨψJ̃σK̃σL̃

(
t
[ĨJ̃ ]

M̃C
M̃K̃L̃

−4t
(ĨK̃)

M̃C
M̃J̃L̃

)
+

+
1

10
i gψ̄µγ

µψĨσJ̃σK̃σL̃
([
t[ĨJ̃]

M̃−2t(ĨJ̃)
M̃
]
C
M̃K̃L̃

−
1

2
t(J̃K̃)

M̃C
M̃ĨL̃

)
−

−
1

2
g2σIσJσKσM̃σÑ t

JM̃
P t

KÑ
QCIPQ , (4.5)

where the superconformal d’alembertian is defined as

¤cσĨ = DaDaσ
Ĩ

=
(
∂a−2ba+ω ba

b

)
Daσ

Ĩ+gt
JK̃

ĨAJ
aD

aσK̃−
i

2
ψ̄µD

µψĨ−2σĨ ψ̄µγ
µχ+

+
1

2
ψ̄µγ

µγ · TψĨ+
1

2
φ̄µγ

µψĨ+2fµ
µσĨ−

1

2
gψ̄µγ

µt
J̃K̃

ĨψJ̃σK̃ . (4.6)
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4.2 Hypermultiplet

Imposing the local superconformal algebra we find the following supersymmetry rules:

δqX = − i ε̄iζAfXiA ,

δ̂ζA =
1

2
i /DqXf iAX εi −

1

3
γ · TkXfAiXε

i −
1

2
gσIkXI f

A
iXε

i + kXfAiXη
i . (4.7)

The covariant derivatives are given by

Dµq
X = Dµq

X + i ψ̄iµζ
AfXiA ,

Dµq
X = ∂µq

X − bµk
X − V jk

µ kXjk + gAI
µk

X
I ,

Dµζ
A = Dµζ

A − kXfAiXφ
i
µ +

1

2
i /DqXfAiXψ

i
µ +

1

3
γ · TkXfAiXψ

i
µ + g

1

2
σIkXI f

A
iXψ

i
µ

Dµζ
A = ∂µζ

A + ∂µq
XωXB

AζB +
1

4
ωµ

bcγbcζ
A − 2bµζ

A + gAI
µtIB

AζB . (4.8)

Similar to section 2.3, requiring closure of the commutator algebra on these transfor-

mation rules yields the equation of motion for the fermions

ΓAconf = /DζA +
1

2
WCDB

AζB ζ̄DζC −
8

3
i kXfAiXχ

i + 2 i γ · TζA −

− g
(
i kXI f

A
iXψ

iI + iσItIB
AζB

)
. (4.9)

The scalar equation of motion can be obtained from varying (4.9):

δ̂QΓ
A =

1

2
i f iAX ∆Xεi +

1

4
γµΓAε̄ψµ −

1

4
γµγνΓAε̄γνψµ , (4.10)

where

∆X
conf = ¤cqX − ζ̄BγaζCDaq

YRX
Y BC +

8

9
T 2kX +

+
4

3
DkX + 8 i χ̄iζAfXiA −

1

4
DXWABCD ζ̄

AζB ζ̄CζD −

− g
(
2 i ψ̄iIζBtIB

AfXiA − k
Y
I JY

X
ijY

Iij
)
+

+ g2σIσJDY k
X
I k

Y
J , (4.11)

and the superconformal d’alembertian is given by

¤cqX ≡ DaD
aqX

= ∂aD
aqX −

5

2
baD

aqX −
1

2
V jk
a JY

X
jkD

aqY + i ψ̄iaD
aζAfXiA +

+ 2fa
akX − 2ψ̄aγ

aχkX + 4ψ̄(ja γ
aχk)kXjk − ψ̄

i
aγ

aγ · TζAfXiA −

− φ̄iaγ
aζAfXiA + ωa

abDbq
X −

1

2
gψ̄aγaψ

IkXI −Daq
Y ∂Y k

X
I A

aI +

+Daq
YDaqZΓXY Z . (4.12)
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Note that so far we didn’t require the presence of an action. Introducing a metric, the

locally conformal supersymmetric action is given by

e−1Lconfhyper = −
1

2
gXYDaq

XDaqY + ζ̄A /Dζ
A +

4

9
Dk2 +

8

27
T 2k2 −

−
16

3
i ζ̄Aχ

ikXfAiX + 2 i ζ̄Aγ · Tζ
A −

1

4
WABCD ζ̄

AζB ζ̄CζD −

−
2

9
ψ̄aγ

aχk2 +
1

3
ζ̄Aγ

aγ · Tψiak
XfAiX +

1

2
i ζ̄Aγ

aγbψiaDbq
XfAiX +

+
2

3
fa

ak2 −
1

6
i ψ̄aγ

abφbk
2 − ζ̄Aγ

aφiak
XfAiX +

+
1

12
ψ̄iaγ

abcψjbDcq
Y JY

X
ijkX −

1

9
i ψ̄aψbTabk

2 +
1

18
i ψ̄aγ

abcdψbTcdk
2 −

− g

(
i σItIB

Aζ̄Aζ
B + 2 i kXI f

A
iX ζ̄Aψ

iI +
1

2
σIkXI f

A
iX ζ̄Aγ

aψia +

+ ψ̄iaγ
aψjIPIij −

1

2
i ψ̄iaγ

abψjbσ
IPIij

)
+

+ 2gY ij
I P

I
ij −

1

2
g2σIσJkXI kJX . (4.13)

No further constraints, other than those given in section 2.3 were necessary in this local case.

In particular, the target space is still hypercomplex or, when an action exists, hyperkähler.

This action leads to the following dynamical equations

δSconfhyper

δζ̄A
= 2CABΓ

B
conf ,

δSconfhyper

δqX
= gXY

(
∆Y
conf − 2ζ̄AΓ

B
confω

Y
B
A − i ψ̄iaγ

aΓAconff
Y
iA

)
. (4.14)

The lagrangians (4.5) and (4.13) are the starting point for obtaining matter couplings to

Poincaré supergravity. This involves a gauge fixing of the local scale and SU(2) symmetries,

which will be studied in a forthcoming paper.

5. Conclusions and discussion

In this paper, we have analysed various multiplets in five spacetime dimensions with N = 2

supersymmetry in a superconformal context. Although we have so far only considered rigid

supersymmetry and superconformal (both rigid and local) supersymmetry, we have found

new couplings. The main emphasis was on the vector-tensor multiplet and on the hyper-

multiplet. Both these multiplets are on-shell and from the closure of the supersymmetry

algebra, one can read off the equations of motion that determine the dynamics of the sys-

tem. These equations of motion do not necessarily follow from an action. The existence of

an action requires extra tensors which are needed to integrate the equations of motion into

an action. In this way we have generalized the work of [33] where off-shell hypermultiplets

were considered, leading e.g. to a restricted class of quaternionic-Kähler manifolds.

For vector-tensor multiplets, we have written down equations of motion with an odd

number of tensor multiplets in the background of an arbitrary number of vector multiplets.
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This is in contrast with formulations based on an action, where an even number of tensor

multiplets is always needed. Even in the case when an action exists, we have found new

couplings where vectors and tensors mix non-trivially due to the off-diagonal structure of

the representation matrices for the gauge group. This introduces new terms in the scalar

potential, such that we have a broader class of models than in the existing literature so

far. We hope that these new potentials lead to interesting new physical applications.

For hypermultiplets, it has been known that the geometry of the scalars is hyperkähler

for rigid supersymmetry [77] or quaternionic-Kähler for supergravity [78]. This was based

on an analysis of the requirements imposed by the existence of an invariant action, and

has been fully proved in [79]. We have written down equations of motion without the need

of a target space metric (and thus a supersymmetric action), but which only involve a

vielbein and a triplet of integrable complex structures. The resulting geometry is that of

a hypercomplex manifold, which is a weakened version of hyperkähler geometry where the

Ricci tensor is antisymmetric and not necessarily zero.

Since the appearance of hypercomplex geometry is somehow new in the physics lit-

erature, we have discussed their properties in appendix B. Group manifolds, e.g. SU(3),

provide examples of hypercomplex geometries that are not hyperkähler, and we have com-

puted the non-vanishing components of the Ricci tensor for hypercomplex group manifolds

in appendix C. The main condition for a hypermultiplet action to exist, is the presence

of a target space metric. In that case, the target space becomes hyperkähler. Our results

then coincide with the literature.

The results of our analysis, both with and without actions, are summarized in table 2,

where we indicate the various geometrical tensors and the restrictions they are subject

to. The resulting scalar potential is displayed in section 3.4. After the analysis for rigid

conformal supersymmetry, we have extended our results to local conformal supersymme-

try. However, it turns out that the extra constraints that are necessary for allowing rigid

conformal symmetry are also sufficient for the extension to local conformal supersymmetry.

For this formulation, we have used the previously obtained results on the Weyl multiplet

in five dimensions [32, 33].

Note that in constructing these superconformal theories, we have allowed kinetic terms

for the scalars with arbitrary signature. This will be important for the conformal gauge-

fixing programme, where the compensating scalars should have negative kinetic terms in

order that the full theory has positive kinetic energy. The couplings of superconformal

matter to the Weyl multiplet are gauge equivalent to matter-coupled Poincaré supergravi-

ties. This involves a partial gauge fixing, which we will investigate in a forthcoming paper,

and which has been considered for some cases in [33, 80]. This should lead to actions that

can be compared with those in [1, 2].

However, not all our results can fall in the theories of the present literature. We

mentioned already above the extension to off-diagonal vector-tensor couplings. The other

extension is due to not requiring the existence of an action.

From a string theory viewpoint, this is quite a natural thing to do. In fact, string

theory does not lead to an action, but it leads to field equations, which in most cases can

be integrated to an action. We should point out that there are also other techniques for
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constructing matter couplings that do not lead to an action. In many cases, the presence

of self-dual antisymmetric tensor fields makes the construction of actions non-trivial. The

gaugings of N = 8 supergravity in 5 dimensions require in some cases an odd number of

antisymmetric tensors, which prohibits the construction of an action [60]. Its reduction to

N = 2 theories should be in the class of the theories of this paper that are not based on

an action.

This interesting aspect of our paper is not confined to five spacetime dimensions. A

similar analysis can be done in other dimensions as well. The results were obtained by

emphasizing the distinction between requirements from the algebra and requirements from

action invariance, which is especially interesting for multiplets with an ‘open’ algebra, where

equations of motions are generated from the anticommutator of two supersymmetries. e.g.

the hypercomplex manifolds can be obtained in the same way for D = 4 and D = 6 theories

with 8 supersymmetries.

We conclude by remarking that it is likely that our newly found matter-couplings

will survive after gauge-fixing the local superconformal symmetry to N = 2 Poincaré

supergravity. It will be of interest to see the consequences of our results for studying

domain walls, renormalization group flows in the context of the AdS/CFT correspondence,

and for finding a supersymmetric Randall-Sundrum scenario.
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A. The linear multiplet

The significance of the linear multiplet appears when we introduce an action for the vector

multiplet, see (3.3) in section 3. This action contains a constant totally symmetric tensor

CIJK . In section 3 we saw that this tensor characterizes a special geometry. The linear

multiplet is related to this vector multiplet action in the sense that the equations of mo-

tion (3.5) that follow from the action (3.3) transform precisely as a linear multiplet in the

adjoint representation.

The degrees of freedom of the linear multiplet are given in table 1. We will consider a

linear multiplet in the background of an off-shell (non-abelian) vector multiplet. We take

the fields of the linear multiplet in an arbitrary representation of dimension m. The rigid

– 40 –



J
H
E
P
1
0
(
2
0
0
2
)
0
4
5

conformal supersymmetry transformation rules for a linear multiplet in the background of

a Yang-Mills multiplet are given by

δLijM = i ε̄(iϕj)M ,

δϕiM = −
1

2
i /DLijM εj −

1

2
i γaEM

a εi +
1

2
NM εi +

1

2
gσI tIN

MLijNεj + 3LijMηj ,

δEM
a = −

1

2
i ε̄γabD

bϕM −
1

2
gε̄γatIN

MσIϕN +
1

2
gε̄(itIN

Mγaψ
j)ILNij − 2η̄γaϕ

M ,

δNM =
1

2
ε̄ /DϕM +

1

2
i gε̄(itIN

Mψj)ILNij +
3

2
i η̄ϕM . (A.1)

The superconformal algebra closes provided the following constraint is satisfied

DaE
aM + gtIN

M
(
Y ijILNij + i ψ̄IϕN + σINN

)
= 0 . (A.2)

Note that the index I refers to the adjoint representation of the vector multiplet. To

obtain the multiplet of equations of motion of the vector multiplet one should also take for

M the adjoint representation in which case all t matrices become structure constants.

B. Hypercomplex manifolds

In this appendix we will present the essential properties of hypercomplex manifolds, and

show the relation with hyperkähler and quaternionic (Kähler) manifolds. We show how

properties of the Nijenhuis tensor determine whether suitable connections for these ge-

ometries can be defined. We give the curvature relations, and finally the properties of

symmetry transformations of these manifolds.

Hypercomplex manifolds were introduced in [81]. A very thorough paper on the subject

is [82]. Examples of homogeneous hypercomplex manifolds that are not hyperkähler, can

be found in [83, 84], and are further discussed in section C. Non-compact homogeneous

manifolds are dealt with in [85]. Various aspects have been treated in two workshops with

mathematicians and physicists [86, 87]. To prepare this appendix, we used extensively [82],

and some parts of this presentation use original methods.

B.1 The family of quaternionic-like manifolds

Let V be a real vector space of dimension 4r, whose coordinates we indicate as qX (with

X = 1, . . . , 4r). We define a hypercomplex structure H on V to be a triple of complex

structures Jα, (with α = 1, 2, 3) which realize the algebra of quaternions,

JαJβ = −δαβ
�
4r + εαβγJγ . (B.1)

A quaternionic structure is the space of linear combinations aαJ
α with aα real numbers.

In this case the 3-dimensional space of complex structures is globally defined, but the

individual complex structures do not have to be globally defined.

Let M be a 4r dimensional manifold. An almost hypercomplex manifold or almost

quaternionic manifold is defined as a manifold M with a field of hypercomplex or quater-

nionic structures.

– 41 –



J
H
E
P
1
0
(
2
0
0
2
)
0
4
5

no preserved metric with a preserved metric

no SU(2) hypercomplex hyperkähler

curvature G `(r,H) USp(2r)

non-zero SU(2) quaternionic quaternionic-Kähler

curvature SU(2) ·G `(r,H) SU(2) · USp(2r)

Table 4: Quaternionic-like manifolds. These are the manifolds that have a quaternionic structure

satisfying (B.1) and (B.2). The holonomy group is indicated. For the right column the metric may

give another real form as e.g. USp(2, 2(r − 1)).

The ‘almost’ disappears under one extra condition. Different terminologies are used to

express this condition. Sometimes it is said that the structure should be 1-integrable. The

same condition is also expressed as the statement that the structure should be covariantly

constant using some connections, and it is also sometimes expressed as the ‘preservation

of the structure’ using that connection. The connection7 here should be a symmetric (i.e.

‘torsionless’) connection Γ(XY )
Z and possibly an SU(2) connection ωX

α. The condition is

0 = DXJ
α
Y
Z ≡ ∂XJ

α
Y
Z − ΓXY

WJαW
Z + ΓXW

ZJαY
W + 2εαβγωX

βJγY
Z . (B.2)

If the SU(2) connection has non-vanishing curvature, the manifold is called quaternionic.8

If the condition (B.2) holds with vanishing SU(2) connection, i.e.

0 = DXJ
α
Y
Z ≡ ∂XJ

α
Y
Z − ΓXY

WJαW
Z +ΓXW

ZJαY
W , (B.3)

then the manifold is hypercomplex. If there is a hermitian metric, i.e. a metric such that

JαX
ZgZY = −JαY

ZgZX , (B.4)

and if this metric is preserved using the connection Γ (i.e. if Γ is the Levi-Civita connection

of this metric) then the hypercomplex and quaternionic manifolds are respectively promoted

to hyperkähler and quaternionic-Kähler manifolds. Hence this gives rise to the scheme9 of

table 4.

We will show in section B.4 that the spaces in the upper row have a Ricci tensor that

is antisymmetric, and those in the right column have a Ricci tensor that is symmetric (and

Einstein). It follows then that the hyperkähler manifolds are Ricci-flat. The restriction

of holonomy group when one goes to the right column, just follows from the fact that the

presence of a metric restricts the holonomy group further to a subgroup of O(4r).10

7The word ‘connection’ is by mathematicians mostly used as the derivative including the ‘connection

coefficients’. We use here ‘connection’ as a word denoting these coefficients, i.e. gauge fields.
8For r = 1 there are subtleties in the definition, to which we will return below.
9The table is essentially taken over from [82], where there is also the terminology unimodular hyper-

complex or unimodular quaternionic if the G `(r) is reduced to S `(r).
10The dot notation means that it is the product up to a common factor in both groups that does not

contribute. In fact, one considers e.g. SU(2) and USp(2r) on coset elements as working one from the left,

and the other from the right. Then if both are −1, they do not contribute. Thus: SU(2) · USp(2r) =
SU(2)×USp(2r)

Z2

.
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A theorem of Swann [71] shows that all quaternionic-Kähler manifolds have a cor-

responding hyperkähler manifold which admit a quaternionically extended homothety [a

homothety extended to an SU(2) vector as in (2.85)] and which has three complex struc-

tures that rotate under an isometric SU(2) action. It has been shown in [30] that this can

be implemented in superconformal tensor calculus to construct the actions of hypermulti-

plets in any quaternionic-Kähler manifold from a hyperkähler cone. Similarly, it has been

proven in [88, 89] that any quaternionic manifold is related to a hypercomplex manifold.

Locally there is a vielbein f iAX (with i = 1, 2 and A = 1, . . . , r) with reality conditions as

in (2.61). In supersymmetry (and thus in this paper), we always start from these vielbeins

and the integrability condition can be expressed as

∂Xf
iA
Y − ΓZXY f

iA
Z + f jAY ωXj

i + f iBY ωXB
A = 0 . (B.5)

B.2 Conventions for curvatures and lemmas

We start with the notations for curvatures. The main conventions for target space curva-

ture, fermion reparametrization curvature and SU(2) curvature are

RXY Z
W ≡ 2∂[XΓY ]Z

W + 2ΓV [X
WΓY ]Z

V ,

RXY B
A ≡ 2∂[XωY ]B

A + 2ω[X|C|
AωY ]B

C ,

RXY i
j ≡ 2∂[XωY ]i

j + 2ω[X|k|
jωY ]i

k . (B.6)

The SU(2) curvature and connection ωXi
j are hermitian traceless,11 and one can make the

transition to triplet indices α = 1, 2, 3 by using the sigma matrices

RXY i
j = i (σα)i

jRXY
α ,

RXY
α = −

1

2
i (σα)i

jRXY i
j = 2∂[XωY ]

α + 2εαβγωX
βωY

γ . (B.7)

This transition between doublet and triplet notation is valid for any triplet object as

e.g. the complex structures. It is useful to know the translation of the inner product:

Ri
jRj

i = −2RαRα.

The curvatures by definition all satisfy the Bianchi identities that say that they are

closed 2-forms, e.g.

D[XRY Z]V
W = 0 . (B.8)

Furthermore, due to the torsionless (symmetric) connection, also the cyclicity property

holds.

RXY Z
W +RZXY

W +RY ZX
W = 0 . (B.9)

The Ricci tensor is defined as

RXY = RZXY
Z . (B.10)

This is not necessarily symmetric. When Γ is the Levi-Civita connection of a metric, then

one can raise and lower indices, RWZXY = RXYWZ and the Ricci tensor is symmetric.

Then one defines the scalar curvature as R = gXYRXY .

11This means symmetric if the indices are put at equal height using the raising or lowering tensor εij

(NW–SE convention).
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We now present three lemmas that are useful in connecting scalar manifold indices with

G `(r,H) indices. These lemmas are used in section 2.3 and will simplify further derivations

in this appendix.

Lemma 1. If a matrix MX
Y satisfies

[Jα,M ] = 2εαβγJβmγ , (B.11)

for some numbers mγ , then the latter are given by

4rmα = Tr (JαM) , (B.12)

and the matrix can be written as

M = −mαJα +N , [N, Jα] = 0 . (B.13)

A matrix M of this type is said to ‘normalize the hypercomplex structure’.

Proof. The first statement is proven by taking the trace of (B.11) with J δ. Inserting this

value of mα in (B.13), it is obvious that the remainder N commutes with the complex

structures.

Lemma 2. If a matrix MX
Y commutes with the complex structures, then it can be writ-

ten as

MX
Y =MA

Bf iAX fYiB . (B.14)

and vice-versa, any MA
B matrix can be transformed with (B.14) to a matrix commuting

with the complex structures.

Proof. The vice-versa statement is easy. For the other direction, one replaces J α with Ji
j as

in (2.71). Then multiply this equation with fXjAf
kB
Z and consider the traceless part in AB.

Lemma 3. If a tensor R[XY ]Z
W satisfies the cyclicity condition (B.9) and commutes with

the complex structures,

RXY Z
V JαV

W − JαZ
VRXY V

W = 0 , (B.15)

it can be written in terms of a tensor WABC
D that is symmetric in its lower indices. If

RXY Z
Z = 0, then also W is traceless.

Proof. By the previous theorem, we can write

RXYW
Z = f iAW fZiBRXYA

B , RXY A
B =

1

2
fWiAf

iB
Z RXYW

Z . (B.16)

We can change all indices to tangent indices, defining

Rij,CDB
A ≡ fXCif

Y
jDRXY B

A = −Rji,DCB
A . (B.17)
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The cyclicity property of R can be used to obtain

0 = f iAZ R[WXY ]
Z = f iB[Y RWX]B

A . (B.18)

We multiply this with fXiCf
Y
Djf

W
kE, leading to

Rkj,ECD
A +Rkj,CDE

A + 2Rjk,DEC
A = 0 . (B.19)

The symmetric part in (jk) of this equation implies that R(jk),ABC
D = 0 [multiply the

equation by 3, and subtract both cyclicity rotated terms in (CDE)]. Thus we find

Rij,CDB
A = −

1

2
εijWCDB

A , (B.20)

with

WCDB
A ≡ εijfXjCf

Y
iDRXYB

A =
1

2
εijfXjCf

Y
iDf

Z
kBf

Ak
W RXY Z

W . (B.21)

Now we prove that W is completely symmetric in the lower indices. The definition imme-

diately implies symmetry in the first two. The [jk] antisymmetric part of (B.19) gives

WECD
A +WDCE

A − 2WEDC
A = 0 . (B.22)

Antisymmetrizing this in two of the indices gives the desired result.

Finally, it is obvious from (B.21) that the tracelessness of R and W are equivalent.

The full result for such a curvature tensor is thus

RXYW
Z = −

1

2
fAiX εijf

jB
Y fkCW fZkDWABC

D . (B.23)

B.3 The connections

In the definition of hypercomplex and quaternionic manifolds, appear the affine connection

ΓXY
Z and an SU(2) connection ωX

α. In this subsection we will show how they can be

obtained. The crucial ingredient is the Nijenhuis tensor.

Nijenhuis tensor. A Nijenhuis tensor Nαβ Z
XY is defined for any combination of two com-

plex structures, but we will use only the ‘diagonal’ Nijenhuis tensor (normalization for later

convenience)

NXY
Z ≡

1

6
JαX

W∂[WJ
α
Y ]

Z − (X ↔ Y ) = −NY X
Z . (B.24)

It satisfies a useful relation

NXY
Z = JαX

X′NX′Y
Z′JαZ′

Z , (B.25)

from which one can deduce that it is traceless.
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Obata connection and hypercomplex manifolds. The torsionless Obata connec-

tion [68] is defined as

ΓObXY
Z = −

1

6

(
2∂(XJ

α
Y )

W + εαβγJβ (X
U∂|U |J

γ
Y )

W
)
JαW

Z . (B.26)

First, note that if a manifold is hypercomplex, i.e. if (B.3) is satisfied, then by inserting the

expression for ∂J from that equation in the right hand side of (B.26), one finds that the

affine connection of the hypercomplex manifold should be the Obata connection, Γ = ΓOb.

One may thus answer the question whether an almost hypercomplex manifold [i.e. with

three matrices satisfying (B.1)], defines a hypercomplex manifold [i.e. satisfies (B.3)]. As

we now know that the affine connection in (B.3) should be (B.26), this can just be checked.

For that purpose, the following equation is useful:

∂XJ
α
Y
Z −

(
ΓObXY

W +NXY
W
)
JαW

Z +
(
ΓObXW

Z +NXW
Z
)
JαY

W = 0 . (B.27)

It shows that any hypercomplex structure can be given a torsionful connection such that

the complex structures are covariantly constant. The condition for a hypercomplex man-

ifold is thus that this connection is torsionless, i.e. that the Nijenhuis tensor vanishes. In

conclusion, a hypercomplex manifold consists of the following data: a manifold M, with a

hypercomplex structure with vanishing Nijenhuis tensor. In the main text, we only use the

Obata connection, and we thus have Γ = ΓOb.

Oproiu connection and quaternionic manifolds. For the quaternionic manifolds, the

affine connection and SU(2) connection can not be uniquely defined. Indeed, one can easily

check that (B.2) is left invariant when we change these two connections simultaneously

using an arbitrary vector ξW as

ΓXY
Z → ΓXY

Z + SWZ
XY ξW , ωX

α → ωX
α + JαX

W ξW , (B.28)

where S is the tensor

SXY
ZW ≡ 2δX(Zδ

Y
W ) − 2JαZ

(XJαW
Y ) , (B.29)

which satisfies the relation

SXV
ZWJ

α
V
Y − JαW

V SXY
ZV = 2εαβγJβZ

XJγW
Y . (B.30)

An invariant SU(2) connection is

ω̃X
α = ωX

α +
1

3
JαX

Y JβY
ZωZ

β =
2

3
ωX

α −
1

3
εαβγJβX

Y ωY
γ . (B.31)

If we use (B.2) in the expression for the Nijenhuis tensor, (B.24), we find that quater-

nionic manifolds do not have a vanishing Nijenhuis tensor, but the latter should satisfy

NXY
Z = −Jα[X

Z ω̃Y ]
α . (B.32)

This condition can be solved for ω̃. We find

(1− 2 r) ω̃X
α = NXY

ZJαZ
Y . (B.33)
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Thus the condition for an almost quaternionic manifold to be quaternionic is that the

Nijenhuis tensor satisfies

(1− 2 r)NXY
Z = −Jα[X

ZNY ]V
WJαW

V . (B.34)

On the other hand, one may also use (B.2) in the expression for the Obata connec-

tion (B.26). Then we find that the affine connection for the quaternionic manifolds is

given by

ΓXY
Z = ΓObXY

Z − Jα(X
ZωY )

α −
1

3
SZUXY J

α
U
V ωV

α , (B.35)

which exhibits the transformation (B.28).

One can take a gauge choice for the invariance. A convenient choice is to impose

JαY
ZωZ

α = 0 . (B.36)

With this choice ω̃X
α = ωX

α. The affine connection in (B.35) simplifies, and this expression

is called the Oproiu connection [90]

ΓOpXY
Z ≡ ΓObXY

Z − Jα(X
ZωY )

α

= ΓObXY
Z +NZ

XY − J
α
Y
ZωX

α . (B.37)

The last expression shows that the Oproiu connection, which up to here was only proven to

be necessary for solving (B.2), gives indeed rise to covariantly constant complex structures

under the condition (B.32). Indeed, the first two terms give already a (torsionful) connec-

tion that gives rise to a covariantly constant hypercomplex structure, see (B.27), and the

last term cancels the SU(2) connection. The condition (B.32) is now the condition that

the connection ΓOp is torsionless.

In conclusion, a quaternionic manifold consists of the following data: a manifold M,

with a hypercomplex structure with Nijenhuis tensor satisfying (B.34).

Levi-Civita connection and hyperkähler or quaternionic-Kähler manifolds. For

hyperkähler manifolds, the Obata connection should coincide with the Levi-Civita connec-

tion of a metric. For quaternionic-Kähler manifolds, the connection that preserves the

metric can be one of the equivalence class defined from the Oproiu connection by a trans-

formation (B.28).

Final note on connections. Note that for a given M and H, it is possible to find

different connections which are all compatible with the hypercomplex structures. The

resulting curvatures are then also different, which implies different (restricted) holonomy

groups. An example on group manifolds, where we use a torsionful and a torsionless

connection, will follow in section C. Other examples can be found in [91, 92, 93], which

discuss ‘HKT’ manifolds, hypercomplex manifolds with torsion.
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B.4 Curvature relations

Splitting according to holonomy. There are two interesting possibilities of splitting

the curvature on quaternionic-like manifolds. First of all, the integrability condition of (B.5)

yields that the total curvature on the manifold is the sum of the SU(2) curvature and the

G `(r,H) curvature which shows that the (restricted) holonomy splits in these two factors:

RXYW
Z = RSU(2)XYW

Z + RG `(r,H)
XYW

Z (B.38)

= −JαW
Z RXY

α + LW
Z
A
BRXY B

A , with LW
Z
A
B ≡ fZiAf

iB
W .

The matrices LA
B and Jα commute and their mutual trace vanishes

JαX
Y LY

Z
A
B = LX

Y
A
BJαY

Z , JαZ
Y LY

Z
A
B = 0 . (B.39)

For hypercomplex (or hyperkähler) manifolds, the SU(2) curvature vanishes. Then the

Riemann tensor commutes with the complex structures and using the cyclicity, one may

use lemmas 2 and 3 to write

RXYW
Z = −

1

2
fAiX εijf

jB
Y fkCW fZkDWABC

D . (B.40)

This W is symmetric in its lower indices. The Ricci tensor is then

RXY =
1

2
εijf

iB
X f jCY WABC

A = −RY X . (B.41)

Thus the Ricci tensor for hypercomplex manifolds is antisymmetric. In general, the an-

tisymmetric part can be traced back to the curvature of the U(1) part in G `(r,H) =

S `(r,H) ×U(1). Indeed, using the cyclicity condition:

R[XY ] = RZ[XY ]
Z = −

1

2
RXY Z

Z = −R
U(1)
XY , R

U(1)
XY ≡ RXYA

A . (B.42)

Splitting in Ricci and Weyl curvature. The separate terms in (B.38) for quaternionic

manifolds do not satisfy the cyclicity condition, and thus are not bona-fide curvatures. We

will now discuss another splitting

R = RRicXYW
Z +R(W)XYW

Z . (B.43)

Both terms will separately satisfy the cyclicity condition. The first part only depends on

the Ricci tensor of the full curvature, and is called the ‘Ricci part ’. The Ricci tensor of the

second part will be zero, and this part will be called the ‘Weyl part ’ [82]. We will prove

that the second part commutes with the complex structures. The lemmas of section B.2

then imply that the second part can be written in terms of a tensor WABC
D, symmetric in

the lower indices and traceless. This tensor appears in supersymmetric theories, which is

another reason for considering this construction. The case r = 1 needs a separate treatment

which will be discussed afterwards.
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To define the splitting (B.43), we define the first term as a function of the Ricci tensor,

and R(W) is just defined as the remainder. The definition of RRic makes again use of the

tensor S in (B.29):

RRicXY Z
W ≡ 2SWV

Z[XBY ]V ,

BXY ≡
1

4r
R(XY ) −

1

2r(r + 2)
Π(XY )

ZWRZW +
1

4(r + 1)
R[XY ] . (B.44)

Here, Π projects bilinear forms onto hermitian ones, i.e.

ΠXY
ZW ≡

1

4

(
δX

ZδY
W + JαX

ZJαY
W
)
. (B.45)

The Ricci part satisfies several properties that can be checked by a straightforward calcu-

lation:

1. The Ricci tensor of RRic is just RXY .

2. The cyclicity property (B.9).

3. Considered as a matrix in its last two indices, this matrix normalizes the hypercom-

plex structure (see lemma 1).

Especially to prove the last one, the property (B.30) can be used (multiplying it with BUX

and antisymmetrizing in [ZU ]). The relation is explicitly

JαZ
W RRicXYW

V −RRicXY Z
W JαW

V = 2εαβγJβZ
V RRicXY

γ ,

with RRicXY
α =

1

4r
JαW

ZRRicXY Z
W = 2Jα[X

ZBY ]Z . (B.46)

The important information is now that the full curvature also satisfies these 3 properties.

The latter one is the integrability property of (B.2):

0 = 2D[XDY ]J
α
Z
V = RXYW

V JαZ
W −RXY Z

WJαW
V − 2εαβγRXY

γJβZ
V . (B.47)

As in general for matrices normalizing the complex structure, we can also express RXY
α as

RXY Z
WJαW

Z = 4rRα
XY . (B.48)

This leads to properties of the Weyl part of the curvature. First of all, it implies

that this part is Ricci-flat. Secondly it also satisfies the cyclicity property. Third, it also

normalizes the hypercomplex structure, defining some R
(W)α
XY . We will now prove that the

latter is zero for r > 1.

The expression for this tensor satisfies a property that can be derived, starting from its

definition, by first using the cyclicity of R(W), then the equation saying that it normalizes

the hypercomplex structure, and finally that it is Ricci-flat

rR
(W)α
XY =

1

4
JαU

VR(W)XY V
U = −

1

2
JαU

VR(W)V [XY ]
U

= −εαβγR
(W)β
V [X JγY ]

V . (B.49)
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Multiplying with JαV
Y and antisymmetrizing leads to

Jα[V
YR

(W)α
X]Y = 0 . (B.50)

Secondly, multiplying (B.49) with J δZ
XJδW

Y , and using (B.49) again for multiplying the

complex structures at the right-hand side, leads to

JβX
ZJβY

VR
(W)α
ZV = −R

(W)α
XY or ΠXY

ZVR
(W)α
ZV = 0 . (B.51)

Finally, multiplying (B.49) with εαδεJδZ
Y leads to

R
(W)α
XY = 0 , if r > 1 . (B.52)

Therefore R(W)XY Z
V is a tensor that satisfies all conditions of lemma 3, and we can thus

write

RXY Z
W = RRicXY Z

W −
1

2
fAiX εijf

jB
Y fkCW fZkDWABC

D . (B.53)

For hypercomplex manifolds, we found that the full curvature can be written in terms of

a tensor WABC
D, see (B.40), which is symmetric in the lower indices, but not necessarily

traceless. One can straightforwardly compute the corresponding W, and find that this is

its traceless part, the trace determining the Ricci tensor:

WABC
D =WABC

D −
3

2(r + 1)
δD(AWBC)E

E , RXY = −RXY A
A =

1

2
εijf

iA
X f jBY WABC

C .

(B.54)

The 1-dimensional case. As

G `(1,H) = S `(1,H) ×U(1) = SU(2)×U(1) , (B.55)

we have now two SU(2) factors in the full holonomy group. This can be written explicitly

by splitting L in (B.38) in a traceless and trace part:

LX
Y
A
B =

1

2
i (σα)A

BJ−αX
Y +

1

2
δYXδ

B
A . (B.56)

This leads to the r = 1 form of (B.38):

RXYW
Z = −J+αW

ZR+αXY − J
−α

W
ZR−αXY + δZWR

U(1)
XY , (B.57)

where for emphasizing the symmetry, we indicate the original complex structures as J+αX
Y .

We saw that for r = 1 we could not perform all steps to get to the decomposition (B.53).

However, some authors define quaternionic and quaternionic-Kähler for r = 1 as a more

restricted class of manifolds such that this decomposition is still valid [94]. For quaternionic-

Kähler manifolds, the definition that is taken in general leads for r = 1 to the manifolds with

holonomy SU(2)×USp(2), which is just SO(4). Thus with this definition all 4-dimensional

riemannian manifolds would be quaternionic-Kähler. Therefore a further restriction is

imposed. This further restriction is also natural in supergravity, as it is equivalent to a

constraint that follows from requiring invariance of the supergravity action.
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In general, as R(W) normalizes the hypercomplex structure, we can by lemma 1 and

lemma 2 write

R(W)XY Z
W = −R

(W)α
XY JαZ

W +R
(W)
XY A

B LZ
W

A
B = R(W)+XY Z

W +R(W)−XY Z
W . (B.58)

We impose

R
(W)α
XY = 0 , (B.59)

as part of the definition of quaternionic manifolds with r = 1. This is thus the equation

that is automatically valid for r > 1. Using lemma 3, this implies that (B.53) is valid for

all quaternionic manifolds.

In the 1-dimensional case, we can see that a possible metric is already fixed up to a

multiplicative function. Indeed, the CAB that is used in (3.27) can only be proportional to

εAB . Therefore, it is said that there is a conformal metric, i.e. a metric determined up to

a (local) scale function λ(q):

gXY ≡ λ(q)f iAX f jBY εijεAB . (B.60)

One can check that this metric is hermitian for any λ(q), i.e. J αXY = JαX
ZgZY is anti-

symmetric. The remaining question is whether this metric is covariantly constant, which

boils down to the covariant constancy of CAB. This condition can be simplified using the

Schouten identity:

DXCAB = ∂XCAB + 2ωX[A
CC|C|B] = ∂XCAB + ωXC

CCAB = εAB
(
∂Xλ(q) + ωXC

Cλ(q)
)
.

(B.61)

We can choose a function λ(q) such that C is covariantly constant iff ωXC
C is a total

derivative, i.e. if the U(1) curvature vanishes. Thus in the 1-dimensional case hypercomplex

manifolds become hyperkähler, and quaternionic manifolds become quaternionic-Kähler if

and only if the U(1) factor in the curvature part G`(1,H) vanishes.

The curvature of Quaternionic-Kähler manifolds. In quaternionic-Kähler mani-

folds, the affine connection is the Levi-Civita connection of a metric. Therefore, the Ricci

tensor is symmetric. As we have already proven that in the hypercomplex case the sym-

metric part vanishes, hyperkähler manifolds have vanishing Ricci tensor. Now we will prove

that the quaternionic-Kähler spaces are Einstein, and that moreover the SU(2) curvatures

are proportional to the complex structures with a proportionality factor that is dependent

on the scalar curvature.

We start again from the integrability property (B.47). Multiplying with J δV
X gives

RY Zδ
αδ − εαδβRXY Z

WJβW
X + JαZ

WRXYW
V JδV

X −

−2εαβδRβ
ZY + 2δαδRβ

XY J
β
Z
X − 2Rδ

XY J
α
Z
X = 0 . (B.62)

The second and third term can be rewritten

RXYW
V JδV

X = −RYWX
V JδV

X −RWXY
V JδV

X

= −RYWX
V JδV

X +RY XW
V JδV

X ,

2RXYW
V JδV

X = −4rRδ
YW . (B.63)
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In the first line, the cyclicity property of the Riemann tensor is used. Then, the symmetry

in interchanging the first two and last two indices (here we use that the curvature originates

from a Levi-Civita connection) and finally interchanging the indices on the last complex

structure, using its antisymmetry (Hermiticity of the metric). This leads to

RY Zδ
αδ + εαδβ2(r − 1)Rβ

Y Z − 2(r − 1)Rδ
Y XJ

α
Z
X + 2δαδRβ

XY J
β
Z
X = 0 . (B.64)

Multiplying with δαδ gives

RY Z = −
2

3
(r + 2)JβZ

XRβ
XY . (B.65)

On the other hand, multiplying (B.64) with εαδγ gives only a non-trivial result for r 6= 1,

in which case we find

for r > 1 : 2Rα
Y Z = εαβγJβY

XRγ
XZ . (B.66)

We impose the same equation for r = 1. We will connect this equation to another require-

ment below.

By replacing εαβγJβY
X by −(JαJγ)Y

X − δXY δ
αγ we get

Rα
XY = −

1

3
JαX

ZJβZ
VRβ

V Y =
1

2(r + 2)
JαX

ZRZY . (B.67)

We also have

JαX
ZRZY

β = εαβγRXY
γ −

1

2(r + 2)
δαβRXY . (B.68)

The final step is obtained by using (B.47) once more. Now multiply this equation with

εαβγJβY XJγV
U , and use for the contraction of the Riemann curvature tensor with J βY X

that we may interchange pairs of indices such that (B.48) can be used. Then everywhere

appears JαRβ, for which we can use (B.68). This leads to the equation expressing that

the manifold is Einstein:

RXY =
1

4r
gXYR . (B.69)

With (B.67), the SU(2) curvature is proportional to the complex structure:

Rα
XY =

1

2
νJαXY , ν ≡

1

4r(r + 2)
R . (B.70)

The Einstein property drastically simplifies the expression for B in (B.44) to

BXY =
1

4
νgXY . (B.71)

The Ricci part of the curvature then becomes proportional to the curvature of a quater-

nionic projective space of the same dimension:

(
RHPn

)
XYWZ

=
1

2
gZ[XgY ]W +

1

2
JαXY J

α
ZW −

1

2
JαZ[XJ

α
Y ]W =

1

2
JαXY J

α
ZW +L[ZW ]

ABL[XY ]AB .

(B.72)
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The full curvature decomposition is then

RXYWZ = ν(RHPn

)XYWZ +
1

2
LZW

ABWABCDLXY
CD , (B.73)

with WABCD completely symmetric. The constraint appearing in supergravity fixes the

value of ν to −1. The quaternionic-Kähler manifolds appearing in supergravity thus have

negative scalar curvature, and this implies that all such manifolds that have at least one

isometry are non-compact.

Finally, we should still comment on the extra constraint (B.66) for r = 1. In the math-

ematics literature [94] the extra constraint is that the quaternionic structure annihilates

the curvature tensor, which is the vanishing of

(Jα ·R)XYWZ ≡ JαX
VRV YWZ + JαY

VRXVWZ + JαZ
VRXYWV + JαW

VRXY V Z

= εαβγ
(
Rβ
XY J

γ
ZW +Rβ

ZWJ
γ
XY

)
, (B.74)

where the second expression is obtained using once more (B.47). We have proven that (B.66)

was sufficient extra input to have Rα
XY proportional to JαXY implying Jα · R = 0. Vice

versa: multiplying (B.74) with εαδεJ εY Z leads to (B.66) if Jα · R = 0. Thus indeed the

vanishing of (B.74) is an equivalent condition that can be imposed for r = 1 and that is

automatically satisfied for r > 1.

B.5 Symmetries

Symmetries of manifolds are most known as isometries for riemannian manifolds (i.e. when

there is a metric). They are transformations δqX = kXI (q)ΛI , where ΛI are infinitesimal

parameters. They are determined by the Killing equation12

D(XkY )I = 0 , kXI ≡ gXY k
Y
I . (B.75)

This definition can only be used when there is a metric. However, there is a weaker equation

that can be used for defining symmetries also in the absence of a metric, but when parallel

transport is defined. Indeed, the Killing equation implies that

−RY ZX
WkWI = DY DZkXI −DZDY kXI = DY DZkXI + DZDXkY I . (B.76)

Using the cyclicity condition on the left hand side to write

RY ZX
W =

1

2

(
RY ZX

W −RZXY
W −RXY Z

W
)
, (B.77)

we obtain

DXDY k
Z
I = RXWY

ZkWI . (B.78)

This equation does not need a metric any more. We will use it as definition of symmetries

when there is no metric available. We will see that it leads to the group structure that is

known from the riemannian case.

12See also ‘conformal Killing vectors’ in section 2.1.
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Of course, we will require also that the symmetries respect the quaternionic structure.

This is the statement that the vector kXI normalizes the quaternionic structure:

LkI
JαX

Y ≡ kZI ∂ZJ
α
X
Y −

(
∂Xk

Z
I

)
JαZ

Y + JαX
Z
(
∂Zk

Y
I

)
= bαβI JβX

Y , (B.79)

for some functions bαβI (q). This bI is antisymmetric, as can be seen by multiplying the

equation with JγY
X .

Thus we define symmetries in quaternionic-like manifolds as those δqX = kXI (q)ΛI ,

such that the vectors kXI satisfy (B.78) and (B.79).

We first consider (B.79). One can add an affine torsionless connection to the deriva-

tives, because they cancel. As a total covariant derivative on J vanishes, we add in case

of quaternionic manifolds the SU(2) connection to the first derivative. This addition is of

the form of the right-hand side. Thus defining P γ
I by bαβI − 2εαβγωX

γkXI = −2εαβγνP γ
I ,

the remaining statement is that there is a P α
I (q) (possibly zero) such that13

JαX
Z
(
DZk

Y
I

)
−
(
DXk

Z
I

)
JαZ

Y = −2εαβγJβX
Y νP γ

I . (B.80)

The equation now takes on the form of (B.11) in lemma 1. Thus, using this lemma, as well

as lemma 2, we have

DXk
Y
I = νJαX

Y Pα
I + LX

Y
A
BtIB

A . (B.81)

tIB
A is the matrix that we saw in the fermion gauge transformation law (2.94). The

rule (B.12) gives an expression for P α
I , which is called the moment map:

4r ν Pα
I = −JαX

Y
(
DY k

X
I

)
. (B.82)

Using the second equation, (B.78) we now find

RZWX
Y kWI = DZDXk

Y
I = νJαX

Y (DZP
α
I ) + LX

Y
A
B
(
DZtIB

A
)
. (B.83)

Using the curvature decomposition (B.38) and projecting onto the complex structures and

L, we find two equations

RZW
αkWI = −νDZP

α
I , RZWB

AkWI = DZtIB
A . (B.84)

The algebra that the vectors kXI define is

2kY[IDY k
X
J ] + fIJ

KkXK = 0 , (B.85)

where fIJ
K are structure constants. Multiplying this relation with JαX

ZDZ , and us-

ing (B.78), and (B.82) gives

2JαX
Z(DZk

Y
[I )(DY k

X
J ]) + 2JαX

Z RZWY
XkY[Ik

W
J ] − 4rνfIJ

KPα
K = 0 . (B.86)

13Here we introduce in fact νP . The factor ν is included for agreement with other papers and allows

a smooth limit ν = 0 to the hypercomplex or hyperkähler case. In fact, we have seen in (2.101) that

supersymmetry in the setting of hypercomplex manifolds demands that the right-hand side of (B.79) is

zero. We will see below that this is unavoidable for hypercomplex manifolds even outside the context of

supersymmetry.
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The trace that appears in the first term can be evaluated by using (B.80) and once

more (B.82), while in the second term we can use the cyclicity condition of the curva-

ture and (B.48) to obtain

−2ν2εαβγP β
I P

γ
J +RYW

αkYI k
W
J − νfIJ

KPα
K = 0 . (B.87)

We thus found that the moment maps, defined in (B.82) satisfy (B.84) and (B.87). The

first of these shows that we can take ν = 0 for the hypercomplex or hyperkähler manifolds.

Both these two relations vanish identically in this case. However, for quaternionic-Kähler

and hyperkähler manifolds, we can use (B.70), and dividing by ν leads to

JαZW k
W
I = −2DZP

α
I , (B.88)

−2νεαβγP β
I P

γ
J +

1

2
JαYWk

Y
I k

W
J − fIJ

KPα
K = 0 . (B.89)

These equations are thus equivalent to the previous ones for ν 6= 0 if there is a metric.

This is thus the quaternionic-Kähler case, for which these relations appear already in [95].

But we did not derive these equations for the ν = 0 (hyperkähler) case. Rather, the

first one is taken as the definition of P for this case. This equation also follows from

supersymmetry requirements, where the moment map P α
I is an object that is needed to

define the action, see (3.34). The moment map is then determined up to constants. As

we saw in section 3.3.2, the constants are fixed when conformal symmetry is imposed.

Similarly, the second equation appears in supersymmetry as a requirement, see (3.36). For

a conformal invariant theory, the constants in P α
I are determined and the moment map

again satisfies (B.89) automatically due to a similar calculation as the one that we did above

for ν 6= 0. Note, however, that for the quaternionic manifolds that are not quaternionic-

Kähler, we can only use (B.84) and (B.87), as (B.88) and (B.89) need a metric. For

hypercomplex manifolds, on the other hand, the moment maps are not defined.

C. Examples: hypercomplex group manifolds

In this appendix we illustrate explicit examples of hypercomplex manifolds. Specifically,

we demonstrate the non-vanishing of the antisymmetric Ricci tensor for some of these

manifolds. The examples that we have in mind are group manifolds, or cosets thereof.

These have two connections preserving the complex structures, one with and one without

torsion. The torsionful connection preserves a metric, which is on the group manifolds the

Cartan-Killing metric. First we consider the generic setup which has such two connections.

C.1 Hypercomplex manifolds with metric and torsionful connection

We consider a space with a metric gXY and torsionful connection coefficients

Γ±Y Z
X = γY Z

X ± TY Z
X , (C.1)

where γY Z
X are the Levi-Civita connection coefficients with respect to this metric, and

where TY Z
X = −TZY

X is the torsion.
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We assume that there are hypercomplex structures that are covariantly constant with

respect to the connection (C.1). We also assume the Nijenhuis condition and therefore

have an Obata connection ΓXY
Z . Taking the plus sign in (C.1) we have

0 = DXJ
α
Y
Z = ∂XJ

α
Y
Z − (γ + T )XY

WJαW
Z + (γ + T )XW

ZJαY
W ,

= ∂XJ
α
Y
Z − ΓXY

WJαW
Z + ΓXW

ZJαY
W . (C.2)

Then the Obata connection can be related to the Levi-Civita connection and torsion by

ΓXY
Z = γXY

Z +
1

6
εαβγJαX

UJβY
V TUV

WJγW
Z +

2

3
Jα(X

V TY )V
WJαW

Z . (C.3)

The antisymmetric part of the Ricci tensor of the Obata connection is

R[XY ] = ∂[Y ΓX]Z
Z

=
2

3
JαW

ZJα[X
V DY ]TZV

W +
2

3
TY X

UJαW
ZJαU

V TZV
W +

+D[XTY ]Z
Z + TY X

UTWU
W , (C.4)

where DX is the torsionful connection. If the torsion is covariant constant and traceless,

as it is in group manifolds, then

R[XY ] =
2

3
TXY

ZVZ with VZ = JαZ
WTWV

UJαU
V . (C.5)

This is the only surviving part of the Ricci tensor in hypercomplex manifolds, and will be

used below.

The Nijenhuis condition can be written as a condition on the torsion (using the metric

to lower indices) as [83]

3J (α[X
UJβ)Y

V TZ]UV = δαβTXY Z . (C.6)

Using the quaternionic algebra J 1J2 = J3 = −J2J1 and the Nijenhuis condition for one of

the complex structures, one can show that the contributions from α = 1, 2 and 3 in (C.5)

are all equal.

C.2 Group manifolds

In [83], 2-dimensional sigma models with extended supersymmetry on group manifolds

were studied. In the case of N = 4, it was shown to be possible to construct three globally

defined, covariantly constant complex structures, on certain groups. Using cohomology, one

argues14 that these manifolds are in fact hypercomplex. For these arguments one makes

use the fact that the second de Rham cohomology vanishes for all simple groups, whereas

Kähler manifolds have a non-trivial Kähler 2-form.

We will explicitly construct the Ricci tensor on the group manifolds considered in [83],

and show that there are cases with non-vanishing Ricci tensor. As this is an antisymmetric

tensor, there is no invariant metric for the Obata connection.

14We thank George Papadopoulos for pointing this out to us.
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In [83], the complex structures were first constructed in one fibre, and then used to

form a field of complex structures with the help of the left- or right-invariant vector fields,

giving rise to (Jα±). As the sigma models included an antisymmetric tensor field in their

action, the connection used in the equations of motion had torsion, which could be written

in terms of the structure constants of the groups. The connections Γ± corresponding to Jα±
differed in a sign, in the sense of (C.1). The torsion TXY Z is completely anti-symmetric,

and defined as (denoting the flat indices on the group manifold with Λ̂, Σ̂, . . .)

gZV TV XY ≡ TXY
Z =

1

2
eΛ̂Xe

Σ̂
Y f

Γ̂
Λ̂Σ̂
eZ
Γ̂

(C.7)

where the eΛ̂X are vielbeins, and dual to the left- or right invariant vector fields. The

vielbeins (and the torsion) are covariantly constant with respect to the connection Γ±Y Z
X .

We will now construct the vector V of (C.5) explicitly, using the connection Γ+. This

means that the complex structures, defined in one fibre, define a field of complex structures

using the left -invariant vector fields.

A key concept in the construction of hypercomplex group manifolds, are the so-called

stages. This is because the 3 complex structures in fact act within any such ‘stage’. A

stage consists of a subset of the generators of a group on which a hypercomplex structure

is defined. One can start from any simple group G to define a stage. One starts by picking

out a highest root θ. One adds −θ, all the roots that are not orthogonal to θ and two more

generators. One of these is the generator in the Cartan subalgebra (CSA) in the direction

of θ and −θ. If the subspace of roots orthogonal to θ form a root space of dimension

(rankG− 2), then the second one is the other element in the CSA that does not belong to

the simple group defined with the roots orthogonal to θ. This happens only for G = SU(n)

with n ≥ 3. In all other cases one has to consider G×U(1) in order to be able to define a

hypercomplex structure. The roots θ and −θ and the two generators of the CSA define an

algebra SU(2)⊕U(1). The stage can thus be written as

SU(2)⊕U(1) ⊕W , (C.8)

where W are all the roots not orthogonal to θ. These form a ‘Wolf space’. The Wolf spaces

W = G
H×SU(2) , G 6= SU(n) ,

W = SU(n)
SU(n−2)×SU(2)×U(1) , n ≥ 3 ,

dimW = 4(h̃g − 2) , (C.9)

where h̃g is the dual Coxeter number15 of the group G, are the quaternionic symmetric

spaces. So far, we considered compact groups. The only non-compact groups that are

allowed are those real forms where just the generators in W are non-compact, and all the

others are compact. Hereafter, the group generated by the roots orthogonal to θ, together

with the remaining elements in the Cartan subalgebra [being H or SU(n − 2) in (C.9)],

is used to construct a new stage in the same way. By this procedure, one constructs the

complex structures in one fibre of the group. For more details we refer to [83] or [84].

15Tables are given in [83], e.g. h̃g = n for SU(n).
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We will now give explicitly the hypercomplex structures (in one stage) in a language

adapted to this paper. As we use flat space indices on a Lie group, these take values in the

Lie algebra. The base for our Lie algebra is taken to be Cartan-Weyl. We will use hatted

Greek capitals to denote all Lie algebra elements. θ and −θ are the chosen highest root

and its negative. Greek capital letters denote the positive generators in W . The full set

in W consists thus of those indicated by ∆ and those by −∆. Small Roman letters k, `

indicate elements of the Cartan subalgebra. The full set of generators is thus

∆̂ = {−θ,−∆, k,∆, θ} ⊕ other stages , (C.10)

where ∆ runs over 2(h̃g − 2) values and k = 1, 2.

First, it is useful to give some more information about the structure of the algebra in

a stage. The root vectors are indicated as ~θ or ~∆ and particular components as θk or ∆k.

The following properties of structure constants, Cartan-Killing metric and root vectors are

useful:

f±∆k,±∆ = ±∆k , f±θk,±θ = ±θk , fk∆,−∆ = ∆k , fkθ,−θ = θk , f±∆∓θ±∆,∓θ = ±
1

2x
α∆ ,

2x2 ≡ h̃g =
1

~θ2
, ~∆ · ~θ =

1

2
~θ2 , α∆ = −αθ−∆ = ±1 ,

gk,` = −δk`~θ
2 , gθ,−θ = g∆,−∆ = −~θ2 . (C.11)

These relations fix a normalization for the generators.

We can now write the non-zero elements of the complex structures as

J1k
` = εk` , J1±θ

±θ = ± i , J1±∆
±∆ = ± i

J2±θ∓∆
∓∆ = ∓ iα∆ , J2k

±θ = x (± i θk − εk`θ`) , J2±θ
k = x (± i θk + εk`θ`) ,

J3±θ∓∆
∓∆ = α∆ , J3k

±θ = x (θk ± i εk`θ`) , J3±θ
k = x (−θk ± i εk`θ`) .

(C.12)

These satisfy the Nijenhuis conditions (C.6).

As written at the end of section C.1, we can limit the calculation of V to the con-

tribution of one of the complex structures. The torsion is proportional to the structure

constants, and as J1 is diagonal in the roots, the vector VΣ̂ has only non-zero components

along the Cartan subalgebra:

Vk =
3

2
J1k

`f
`,∆̂

Γ̂J1Γ̂
∆̂ = 3εk` i

(
θ` +

∑

∆

∆`

)
= 3 i εk`θ`(h̃g − 1) . (C.13)

Though this is non-zero for all the groups under consideration, the Ricci tensor is only non-

vanishing for G = SU(n) with n ≥ 3. Indeed, in all other cases, the generator corresponding

to the index k in (C.13) corresponds to the extra U(1) factor that was added to G, and

there are thus no non-vanishing RXY = 2
3TXY

kVk.

The only case in which we find a non-vanishing Ricci tensor, is when the Wolf space is

W =
SU(n)

SU(n− 2)× SU(2)×U(1)
, n ≥ 3 , (C.14)
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Then the non-vanishing components of the Ricci tensor are of the form

R∆,−∆ = −R−∆,∆ = i∆kεk`θ`(h̃g − 1) , (C.15)

and one can see again that ∆kεk`θ` vanishes for all other cases than G = SU(n). In this

case, it is simply a function of n.

The group manifolds that have a non-zero Ricci tensor are those that have a stage

with the Wolf spaces (C.14). Checking the list in [83], these are SU(2n−1), SU(2n)×U(1)

(both for n ≥ 2) and E6 × U(1)2. The other cases are Ricci flat, and one may wonder

whether there is a metric whose Levi-Civita tensor is the Obata connection. This can not

be the Cartan-Killing metric as its Levi-Civita tensor has a non-vanishing Ricci tensor and

we just proved that the Obata connection has vanishing Ricci tensor. One may try to use

cohomological arguments to exclude also any other metric.

After obtaining this result, we can understand it from the geometrical structure of the

stages. We see that the origin of a non-zero Ricci tensor sits in the fact that there are

non-zero roots in the direction of the U(1) factor in the decomposition (C.8). Thus, we see

that we obtain a non-zero Ricci tensor if this U(1) is already present in the structure of

the Wolf space, i.e. the origin sits in the U(1) factor in the structure of the coset (C.14).
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[28] M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys.

Lett. B 76 (1978) 54.

[29] M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity,

Phys. Rev. D 17 (1978) 3179.

– 60 –

http://jhep.sissa.it/stdsearch?paper=10%282000%29033
http://jhep.sissa.it/stdsearch?paper=10%282000%29033
http://xxx.lanl.gov/abs/hep-th/0007044
http://jhep.sissa.it/stdsearch?paper=01%282001%29011
http://xxx.lanl.gov/abs/hep-th/0008112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB609%2C183
http://xxx.lanl.gov/abs/hep-th/0101007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB601%2C49
http://xxx.lanl.gov/abs/hep-th/0101119
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C104006
http://xxx.lanl.gov/abs/hep-th/0104056
http://xxx.lanl.gov/abs/hep-th/0109094
http://jhep.sissa.it/stdsearch?paper=07%282001%29026
http://xxx.lanl.gov/abs/hep-th/0104156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB630%2C326
http://xxx.lanl.gov/abs/hep-th/0105207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB517%2C184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB517%2C184
http://xxx.lanl.gov/abs/hep-th/0106092
http://jhep.sissa.it/stdsearch?paper=03%282002%29044
http://xxx.lanl.gov/abs/hep-th/0201270
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB627%2C357
http://xxx.lanl.gov/abs/hep-th/0112136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB588%2C471
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB588%2C471
http://xxx.lanl.gov/abs/hep-th/0004179
http://jhep.sissa.it/stdsearch?paper=10%282000%29013
http://xxx.lanl.gov/abs/hep-th/0006107
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C105016
http://xxx.lanl.gov/abs/hep-th/0110089
http://jhep.sissa.it/stdsearch?paper=11%282001%29042
http://xxx.lanl.gov/abs/hep-th/0110072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB69%2C304
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB129%2C125
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB76%2C54
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB76%2C54
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD17%2C3179


J
H
E
P
1
0
(
2
0
0
2
)
0
4
5

[30] B. de Wit, B. Kleijn and S. Vandoren, Superconformal hypermultiplets, Nucl. Phys. B 568

(2000) 475 [hep-th/9909228].
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[74] B. de Wit, M. Roček and S. Vandoren, Gauging isometries on hyperkaehler cones and

quaternion- kaehler manifolds, Phys. Lett. B 511 (2001) 302 [hep-th/0104215].

[75] S. Ferrara, L. Girardello, T. Kugo and A. Van Proeyen, Relation between different auxiliary

field formulations of N = 1 supergravity coupled to matter, Nucl. Phys. B 223 (1983) 191.

[76] H. Nishino and S. Rajpoot, Alternative N = 2 supergravity in five dimensions with

singularities, Phys. Lett. B 502 (2001) 246 [hep-th/0011066].
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