190 research outputs found

    Generation of both cortical and Aire(+) medullary thymic epithelial compartments from CD205(+) progenitors

    Get PDF
    In the adult thymus, the development of self-tolerant thymocytes requires interactions with thymic epithelial cells (TECs). Although both cortical and medullary TECs (cTECs/mTECs) are known to arise from common bipotent TEC progenitors, the phenotype of these progenitors and the timing of the emergence of these distinct lineages remain unclear. Here, we have investigated the phenotype and developmental properties of bipotent TEC progenitors during cTEC/mTEC lineage development. We show that TEC progenitors can undergo a stepwise acquisition of first cTEC and then mTEC hallmarks, resulting in the emergence of a progenitor population simultaneously expressing the cTEC marker CD205 and the mTEC regulator Receptor Activator of NF-κB (RANK). In vivo analysis reveals the capacity of CD205(+) TECs to generate functionally competent cortical and medullary microenvironments containing both cTECs and Aire(+) mTECs. Thus, TEC development involves a stage in which bipotent progenitors can co-express hallmarks of the cTEC and mTEC lineages through sequential acquisition, arguing against a simple binary model in which both lineages diverge simultaneously from bipotent lineage negative TEC progenitors. Rather, our data reveal an unexpected overlap in the phenotypic properties of these bipotent TECs with their lineage-restricted counterparts

    Positive Selection by Purified MHC Class II / Thymic Epithelial Cells In Vitro: Costimulatory Signals Mediated by B7 Are Not Involved

    Get PDF
    We have investigated the possibility that the costimulatory signals required for activation of mature T cells also play a role in providing differentiation signals for positive selection during T-cell development. We show that purified MHC Class II+ thymic epithelial cells are able to support positive selection in vitro but lack both the functional capacity to deliver costimulatory signals and expression of the costimulatory ligand B7. Our results suggest that the additional signals provided by costimulatory ligands are not required for TCR-mediated positive selection, although other ancillary signals provided by thymic epithelial cells may be involved

    Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development

    Get PDF
    In the thymus, medullary thymic epithelial cells (mTEC) regulate T cell tolerance via negative selection and Foxp3(+) regulatory T cell (Treg) development, and alterations in the mTEC compartment can lead to tolerance breakdown and autoimmunity. Both the receptor activator for NF-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and expression of the transcriptional regulator Aire are involved in the regulation of thymus medullary microenvironments. However, their impact on the mechanisms controlling mTEC homeostasis is poorly understood, as are the processes that enable the thymus medulla to support the balanced production of mTEC-dependent Foxp3(+) Treg. In this study, we have investigated the control of mTEC homeostasis and examined how this process impacts the efficacy of Foxp3(+) Treg development. Using newly generated RANK Venus reporter mice, we identify distinct RANK(+) subsets that reside within both the mTEC(hi) and mTEC(lo) compartments and that represent direct targets of OPG-mediated control. Moreover, by mapping OPG expression to a subset of Aire(+) mTEC, our data show how cis- and trans-acting mechanisms are able to control the thymus medulla by operating on multiple mTEC targets. Finally, we show that whereas the increase in mTEC availability in OPG-deficient (Tnfrsf11b(−/−)) mice impacts the intrathymic Foxp3(+) Treg pool by enhancing peripheral Treg recirculation back to the thymus, it does not alter the number of de novo Rag2pGFP(+)Foxp3(+) Treg that are generated. Collectively, our study defines patterns of RANK expression within the thymus medulla, and it shows that mTEC homeostasis is not a rate-limiting step in intrathymic Foxp3(+) Treg production

    RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla

    Get PDF
    Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4+3− inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4+3− cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire+ mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80−Aire− mTEC progenitors into CD80+Aire+ mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire+ mTECs and highlight a previously unrecognized role for CD4+3−RANKL+ inducer cells in intrathymic self-tolerance

    A novel method to allow noninvasive, longitudinal imaging of the murine immune system in vivo

    Get PDF
    In vivo imaging has revolutionized understanding of the spatiotemporal complexity that subserves the generation of successful effector and regulatory immune responses. Until now, invasive surgery has been required for microscopic access to lymph nodes (LNs), making repeated imaging of the same animal impractical and potentially affecting lymphocyte behavior. To allow longitudinal in vivo imaging, we conceived the novel approach of transplanting LNs into the mouse ear pinna. Transplanted LNs maintain the structural and cellular organization of conventional secondary lymphoid organs. They participate in lymphocyte recirculation and exhibit the capacity to receive and respond to local antigenic challenge. The same LN could be repeatedly imaged through time without the requirement for surgical exposure, and the dynamic behavior of the cells within the transplanted LN could be characterized. Crucially, the use of blood vessels as fiducial markers also allowed precise re-registration of the same regions for longitudinal imaging. Thus, we provide the first demonstration of a method for repeated, noninvasive, in vivo imaging of lymphocyte behavior

    Wnt4 and LAP2alpha as pacemakers of Thymic Epithelial Senescence

    Get PDF
    Age-associated thymic involution has considerable physiological impact by inhibiting de novo T-cell selection. This impaired T-cell production leads to weakened immune responses. Yet the molecular mechanisms of thymic stromal adipose involution are not clear. Age-related alterations also occur in the murine thymus providing an excellent model system. In the present work structural and molecular changes of the murine thymic stroma were investigated during aging. We show that thymic epithelial senescence correlates with significant destruction of epithelial network followed by adipose involution. We also show in purified thymic epithelial cells the age-related down-regulation of Wnt4 (and subsequently FoxN1), and the prominent increase in LAP2α expression. These senescence-related changes of gene expression are strikingly similar to those observed during mesenchymal to pre-adipocyte differentiation of fibroblast cells suggesting similar molecular background in epithelial cells. For molecular level proof-of-principle stable LAP2α and Wnt4-over-expressing thymic epithelial cell lines were established. LAP2α over-expression provoked a surge of PPARγ expression, a transcription factor expressed in pre-adipocytes. In contrast, additional Wnt4 decreased the mRNA level of ADRP, a target gene of PPARγ. Murine embryonic thymic lobes have also been transfected with LAP2α- or Wnt4-encoding lentiviral vectors. As expected LAP2α over-expression increased, while additional Wnt4 secretion suppressed PPARγ expression. Based on these pioneer experiments we propose that decreased Wnt activity and increased LAP2α expression provide the molecular basis during thymic senescence. We suggest that these molecular changes trigger thymic epithelial senescence accompanied by adipose involution. This process may either occur directly where epithelium can trans-differentiate into pre-adipocytes; or indirectly where first epithelial to mesenchymal transition (EMT) occurs followed by subsequent pre-adipocyte differentiation. The latter version fits better with literature data and is supported by the observed histological and molecular level changes

    TSCOT + Thymic Epithelial Cell-Mediated Sensitive CD4 Tolerance by Direct Presentation

    Get PDF
    Although much effort has been directed at dissecting the mechanisms of central tolerance, the role of thymic stromal cells remains elusive. In order to further characterize this event, we developed a mouse model restricting LacZ to thymic stromal cotransporter (TSCOT)-expressing thymic stromal cells (TDLacZ). The thymus of this mouse contains approximately 4,300 TSCOT+ cells, each expressing several thousand molecules of the LacZ antigen. TSCOT+ cells express the cortical marker CDR1, CD40, CD80, CD54, and major histocompatibility complex class II (MHCII). When examining endogenous responses directed against LacZ, we observed significant tolerance. This was evidenced in a diverse T cell repertoire as measured by both a CD4 T cell proliferation assay and an antigen-specific antibody isotype analysis. This tolerance process was at least partially independent of Autoimmune Regulatory Element gene expression. When TDLacZ mice were crossed to a novel CD4 T cell receptor (TCR) transgenic reactive against LacZ (BgII), there was a complete deletion of double-positive thymocytes. Fetal thymic reaggregate culture of CD45- and UEA-depleted thymic stromal cells from TDLacZ and sorted TCR-bearing thymocytes excluded the possibility of cross presentation by thymic dendritic cells and medullary epithelial cells for the deletion. Overall, these results demonstrate that the introduction of a neoantigen into TSCOT-expressing cells can efficiently establish complete tolerance and suggest a possible application for the deletion of antigen-specific T cells by antigen introduction into TSCOT+ cells

    The neural correlates of social attention: automatic orienting to social and nonsocial cues

    Get PDF
    Previous evidence suggests that directional social cues (e.g., eye gaze) cause automatic shifts in attention toward gaze direction. It has been proposed that automatic attentional orienting driven by social cues (social orienting) involves a different neural network from automatic orienting driven by nonsocial cues. However, previous neuroimaging studies on social orienting have only compared gaze cues to symbolic cues, which typically engage top-down mechanisms. Therefore, we directly compared the neural activity involved in social orienting to that involved in purely automatic nonsocial orienting. Twenty participants performed a spatial cueing task consisting of social (gaze) cues and automatic nonsocial (peripheral squares) cues presented at short and long stimulus (cue-to-target) onset asynchronies (SOA), while undergoing fMRI. Behaviorally, a facilitation effect was found for both cue types at the short SOA, while an inhibitory effect (inhibition of return: IOR) was found only for nonsocial cues at the long SOA. Imaging results demonstrated that social and nonsocial cues recruited a largely overlapping fronto-parietal network. In addition, social cueing evoked greater activity in occipito-temporal regions at both SOAs, while nonsocial cueing recruited greater subcortical activity, but only for the long SOA (when IOR was found). A control experiment, including central arrow cues, confirmed that the occipito-temporal activity was at least in part due to the social nature of the cue and not simply to the location of presentation (central vs. peripheral). These results suggest an evolutionary trajectory for automatic orienting, from predominantly subcortical mechanisms for nonsocial orienting to predominantly cortical mechanisms for social orienting
    corecore