46 research outputs found

    Methylome Alterations “Mark” New Therapeutic Opportunities in Glioblastoma

    Get PDF
    In this issue of Cancer Cell, Sturm et al. report that global DNA methylation patterns in glioblastoma multiforme divide adult and pediatric tumors into subgroups that have characteristic DNA mutations, mRNA profiles, and most importantly, different clinical behaviors. These findings suggest novel opportunities for therapeutics for this dreaded disease

    Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma

    Get PDF
    Introduction Diffuse intrinsic pontine glioma (DIPG) is a malignant pediatric brain tumor associated with dismal outcome. Recent high-throughput molecular studies have shown a high frequency of mutations in histone-encoding genes (H3F3A and HIST1B) and distinctive epigenetic alterations in these tumors. Epigenetic alterations described in DIPG include global DNA hypomethylation. In addition to the generally repressive methylcytosine DNA alteration, 5-hydroxymethylation of cytosine (5hmC) is recognized as an epigenetic mark associated with active chromatin. We hypothesized that in addition to alterations in DNA methylation, that there would be changes in 5hmC. To test this hypothesis, we performed immunohistochemical studies to compare epigenetic alterations in DIPG to extrapontine adult and pediatric glioblastoma (GBM) and normal brain. A total of 124 tumors were scored for histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 9 trimethylation (H3K9me3) and 104 for 5hmC and 5-methylcytosine (5mC). An H-score was derived by multiplying intensity (0–2) by percentage of positive tumor nuclei (0-100%). Results We identified decreased H3K27me3 in the DIPG cohort compared to pediatric GBM (p \u3c 0.01), adult GBM (p \u3c 0.0001) and normal brain (p \u3c 0.0001). H3K9me3 was not significantly different between tumor types. Global DNA methylation as measured by 5mC levels were significantly lower in DIPG compared to pediatric GBM (p \u3c 0.001), adult GBM (p \u3c 0.01), and normal brain (p \u3c 0.01). Conversely, 5hmC levels were significantly higher in DIPG compared to pediatric GBM (p \u3c 0.0001) and adult GBM (p \u3c 0.0001). Additionally, in an independent set of DIPG tumor samples, TET1 andTET3 mRNAs were found to be overexpressed relative to matched normal brain. Conclusions Our findings extend the immunohistochemical study of epigenetic alterations in archival tissue to DIPG specimens. Low H3K27me3, decreased 5mC and increased 5hmC are characteristic of DIPG in comparison with extrapontine GBM. In DIPG, the relative imbalance of 5mC compared to 5hmC may represent an opportunity for therapeutic intervention

    The Chromatin-Modifying Protein HMGA2 Promotes Atypical Teratoid/Rhabdoid Cell Tumorigenicity

    Get PDF
    Atypical teratoid/rhabdoid tumor (AT/RT) is an aggressive pediatric central nervous system tumor. The poor prognosis of AT/RT warrants identification of novel therapeutic targets and strategies. High mobility group A2 (HMGA2) is a developmentally important chromatin modifying protein that positively regulates tumor growth, self-renewal and invasion in other cancer types. HMGA2 was recently identified as being upregulated in AT/RT tissue, but the role of HMGA2 in brain tumors remains unknown. We used lentiviral short hairpin RNA to suppress HMGA2 in AT/RT cell lines and found that loss of HMGA2 led to decreased cell growth, proliferation, colony formation and increased apoptosis. We also found that suppression of HMGA2 negatively affected in vivo orthotopic xenograft tumor growth, more than doubling median survival of the mice from 58 days to 153 days. Our results indicate a role for HMGA2 in AT/RT in vitro and in vivo and demonstrate that HMGA2 is a potential therapeutic target in these lethal pediatric tumors

    Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels

    Get PDF
    This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportation sector. AHSS have often very complex and hierarchical microstructures consisting of ferrite, austenite, bainite, or martensite matrix or of duplex or even multiphase mixtures of these constituents, sometimes enriched with precipitates. This complexity makes it challenging to establish reliable and mechanism-based microstructure–property relationships. A number of excellent studies already exist about the different types of AHSS (such as dual-phase steels, complex phase steels, transformation-induced plasticity steels, twinning-induced plasticity steels, bainitic steels, quenching and partitioning steels, press hardening steels, etc.) and several overviews appeared in which their engineering features related to mechanical properties and forming were discussed. This article reviews recent progress in the understanding of microstructures and alloy design in this field, placing particular attention on the deformation and strain hardening mechanisms of Mn-containing steels that utilize complex dislocation substructures, nanoscale precipitation patterns, deformation-driven transformation, and twinning effects. Recent developments on microalloyed nanoprecipitation hardened and press hardening steels are also reviewed. Besides providing a critical discussion of their microstructures and properties, vital features such as their resistance to hydrogen embrittlement and damage formation are also evaluated. We also present latest progress in advanced characterization and modeling techniques applied to AHSS. Finally, emerging topics such as machine learning, through-process simulation, and additive manufacturing of AHSS are discussed. The aim of this viewpoint is to identify similarities in the deformation and damage mechanisms among these various types of advanced steels and to use these observations for their further development and maturation

    Defective Lipid Droplet-Lysosome Interaction Causes Fatty Liver Disease as Evidenced by Human Mutations in TMEM199 and CCDC115

    Get PDF
    BACKGROUND &amp; AIMS: Recently, novel inborn errors of metabolism were identified because of mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia, and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models, and a mouse model.METHODS AND RESULTS: Patients with TMEM199 and CCDC115 mutations displayed hyperlipidemia, characterized by increased levels of lipoproteins in the very low density lipoprotein range. HepG2 hepatoma cells, in which the expression of TMEM199 and CCDC115 was silenced, and induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells from patients with TMEM199 mutations showed markedly increased secretion of apolipoprotein B (apoB) compared with controls. A mouse model for TMEM199 deficiency with a CRISPR/Cas9-mediated knock-in of the human A7E mutation had marked hepatic steatosis on chow diet. Plasma N-glycans were hypogalactosylated, consistent with the patient phenotype, but no clear plasma lipid abnormalities were observed in the mouse model. In the siTMEM199 and siCCDC115 HepG2 hepatocyte models, increased numbers and size of lipid droplets were observed, including abnormally large lipid droplets, which colocalized with lysosomes. Excessive de novo lipogenesis, failing oxidative capacity, and elevated lipid uptake were not observed. Further investigation of lysosomal function revealed impaired acidification combined with impaired autophagic capacity.CONCLUSIONS: Our data suggest that the hyperchole-sterolemia in TMEM199 and CCDC115 deficiency is due to increased secretion of apoB-containing particles. This may in turn be secondary to the hepatic steatosis observed in these patients as well as in the mouse model. Mechanistically, we observed impaired lysosomal function characterized by reduced acidification, autophagy, and increased lysosomal lipid accumulation. These findings could explain the hepatic steatosis seen in patients and highlight the importance of lipophagy in fatty liver disease. Because this pathway remains understudied and its regulation is largely untargeted, further exploration of this pathway may offer novel strategies for therapeutic interventions to reduce lipotoxicity in fatty liver disease.</p

    The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models

    Get PDF
    Pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors in desperate need of a curative treatment. Oncolytic virotherapy is emerging as a solid therapeutic approach. Delta-24-RGD is a replication competent adenovirus engineered to replicate in tumor cells with an aberrant RB pathway. This virus has proven to be safe and effective in adult gliomas. Here we report that the administration of Delta-24-RGD is safe in mice and results in a significant increase in survival in immunodeficient and immunocompetent models of pHGG and DIPGs. Our results show that the Delta-24-RGD antiglioma effect is mediated by the oncolytic effect and the immune response elicited against the tumor. Altogether, our data highlight the potential of this virus as treatment for patients with these tumors. Of clinical significance, these data have led to the start of a phase I/II clinical trial at our institution for newly diagnosed DIPG (NCT03178032)

    Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target

    Get PDF
    Atypical teratoid rhabdoid tumor (AT/RT) is among the most fatal of all pediatric brain tumors. Aside from loss of function mutations in the SMARCB1 (BAF47/INI1/SNF5) chromatin remodeling gene, little is known of other molecular drivers of AT/RT. LIN28A and LIN28B are stem cell factors that regulate thousands of RNAs and are expressed in aggressive cancers. We identified high-levels of LIN28A and LIN28B in AT/RT primary tumors and cell lines, with corresponding low levels of the LIN28-regulated microRNAs of the let-7 family. Knockdown of LIN28A by lentiviral shRNA in the AT/RT cell lines CHLA-06-ATRT and BT37 inhibited growth, cell proliferation and colony formation and induced apoptosis. Suppression of LIN28A in orthotopic xenograft models led to a more than doubling of median survival compared to empty vector controls (48 vs 115 days). LIN28A knockdown led to increased expression of let-7b and let-7g microRNAs and a down-regulation of KRAS mRNA. AT/RT primary tumors expressed increased mitogen activated protein (MAP) kinase pathway activity, and the MEK inhibitor selumetinib (AZD6244) decreased AT/RT growth and increased apoptosis. These data implicate LIN28/RAS/MAP kinase as key drivers of AT/RT tumorigenesis and indicate that targeting this pathway may be a therapeutic option in this aggressive pediatric malignancy
    corecore