19 research outputs found

    Photodissociation of Cobalt Tricarbonyl Nitrosyl at 290 nm

    No full text
    The photodissociation of Co(CO)3NO was studied. A three photon excitation at 290 nanometers was used to produce Co(I)* in a number of excited states that emit in the range of 280 to 340 nanometers. The population distribution of Co(I) excited states was found to follow Maxwell-Boltzmann statistics giving an electronic temperature of 2800 +/- 700 K. The distribution of Co(I)* states indicates the photodissociation is occurring by a direct mechanism. In support of the population distribution results, upon buffer gas collisions with 3-10 psi helium or argon gas the intensity of the excited Co(I) emission decreased by a proportional intensity, thus showing the effects of buffer gas collisions on a direct mechanism

    Rapid quantification of insulin degludec by immunopurification combined with liquid chromatography high-resolution mass spectrometry.

    Get PDF
    Insulin degludec is an ultra-long-acting insulin analogue that is increasingly being used in diabetes due to its favourable efficacy and safety profile. Thus, there is an increasing demand for a reliable and specific analytical method to quantify insulin degludec for research, pharmaceutical industry and clinical applications. We developed and validated an automated, high-throughput method for quantification of insulin degludec in human blood samples across the expected clinical range combining immunopurification with high-resolution mass spectrometry. Validation was performed according to the requirements of the US Food and Drug Administration. The method satisfyingly met the following parameters: lower limit of quantification (120 pM), linearity, accuracy (error < 5%), precision (CV < 7.7%), selectivity, carry-over, recovery (89.7-97.2%), stability and performance in the presence of other insulin analogues. The method was successfully applied to clinical samples of patients treated with insulin degludec showing a good correlation with the administered dose (r2 = 0.78). High usability of the method is supported by the small specimen volume, automated sample processing and short analysis time. In conclusion, this reliable, easy-to-use and specific mass spectrometric insulin degludec assay offers great promise to address the current unmet need for standardized insulin analytics in academic and industrial research. Graphical Abstract

    Detection of bound and free IGF-1 and IGF-2 in human plasma via biomolecular interaction analysis mass spectrometry

    Get PDF
    AbstractInsulin like growth factor (IGF)-1 and IGF-2 were assayed from human plasma via biomolecular interaction analysis mass spectrometry, utilizing antibodies as ligands for affinity retrieval. Detection of both targeted and non-targeted IGFs in the mass spectra indicated possible protein complex retrieval by the individual antibodies. A series of control experiments eliminated the possibility of analyte cross-walking between flow cells, significant antibodies cross-reactivity, and direct IGF interactions. To disrupt the putative protein complex and release its constituent proteins, plasma samples were treated with detergents. An SDS-treated plasma yielded IGF signals in a different ratio than the one observed in the mass spectra from the non-treated plasma, suggesting disruption of the protein complex, and its retrieval from non-treated plasma. Novel truncated IGF-2 variant, missing its N-terminal Alanine, was detected in all mass spectra

    Targeted selected reaction monitoring mass spectrometric immunoassay for insulin-like growth factor 1.

    Get PDF
    Insulin-like growth factor 1 (IGF1) is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM) mode. The resulting quantitative mass spectrometric immunoassay (MSIA) exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories
    corecore