45 research outputs found

    Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals

    Full text link
    We present a method to integrate the equations of motion that govern bound, accelerated orbits in Schwarzschild spacetime. At each instant the true worldline is assumed to lie tangent to a reference geodesic, called an osculating orbit, such that the worldline evolves smoothly from one such geodesic to the next. Because a geodesic is uniquely identified by a set of constant orbital elements, the transition between osculating orbits corresponds to an evolution of the elements. In this paper we derive the evolution equations for a convenient set of orbital elements, assuming that the force acts only within the orbital plane; this is the only restriction that we impose on the formalism, and we do not assume that the force must be small. As an application of our method, we analyze the relative motion of two massive bodies, assuming that one body is much smaller than the other. Using the hybrid Schwarzschild/post-Newtonian equations of motion formulated by Kidder, Will, and Wiseman, we treat the unperturbed motion as geodesic in a Schwarzschild spacetime whose mass parameter is equal to the system's total mass. The force then consists of terms that depend on the system's reduced mass. We highlight the importance of conservative terms in this force, which cause significant long-term changes in the time-dependence and phase of the relative orbit. From our results we infer some general limitations of the radiative approximation to the gravitational self-force, which uses only the dissipative terms in the force.Comment: 18 pages, 6 figures, final version to be published in Physical Review

    Circular orbits of corotating binary black holes: comparison between analytical and numerical results

    Get PDF
    We compare recent numerical results, obtained within a ``helical Killing vector'' (HKV) approach, on circular orbits of corotating binary black holes to the analytical predictions made by the effective one body (EOB) method (which has been recently extended to the case of spinning bodies). On the scale of the differences between the results obtained by different numerical methods, we find good agreement between numerical data and analytical predictions for several invariant functions describing the dynamical properties of circular orbits. This agreement is robust against the post-Newtonian accuracy used for the analytical estimates, as well as under choices of resummation method for the EOB ``effective potential'', and gets better as one uses a higher post-Newtonian accuracy. These findings open the way to a significant ``merging'' of analytical and numerical methods, i.e. to matching an EOB-based analytical description of the (early and late) inspiral, up to the beginning of the plunge, to a numerical description of the plunge and merger. We illustrate also the ``flexibility'' of the EOB approach, i.e. the possibility of determining some ``best fit'' values for the analytical parameters by comparison with numerical data.Comment: Minor revisions, accepted for publication in Phys. Rev. D, 19 pages, 6 figure

    A generalized Damour-Navier-Stokes equation applied to trapping horizons

    Full text link
    An identity is derived from Einstein equation for any hypersurface H which can be foliated by spacelike two-dimensional surfaces. In the case where the hypersurface is null, this identity coincides with the two-dimensional Navier-Stokes-like equation obtained by Damour in the membrane approach to a black hole event horizon. In the case where H is spacelike or null and the 2-surfaces are marginally trapped, this identity applies to Hayward's trapping horizons and to the related dynamical horizons recently introduced by Ashtekar and Krishnan. The identity involves a normal fundamental form (normal connection 1-form) of the 2-surface, which can be viewed as a generalization to non-null hypersurfaces of the Hajicek 1-form used by Damour. This 1-form is also used to define the angular momentum of the horizon. The generalized Damour-Navier-Stokes equation leads then to a simple evolution equation for the angular momentum.Comment: Added subsection IV.D; corrected an error in Appendix A; added some references; accepted for publication in Phys. Rev. D (16 pages, 4 EPS figures

    Relativistic theory of tidal Love numbers

    Full text link
    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.Comment: 25 pages, 8 figures, many tables; final version to be published in Physical Review

    Area evolution, bulk viscosity and entropy principles for dynamical horizons

    Full text link
    We derive from Einstein equation an evolution law for the area of a trapping or dynamical horizon. The solutions to this differential equation show a causal behavior. Moreover, in a viscous fluid analogy, the equation can be interpreted as an energy balance law, yielding to a positive bulk viscosity. These two features contrast with the event horizon case, where the non-causal evolution of the area and the negative bulk viscosity require teleological boundary conditions. This reflects the local character of trapping horizons as opposed to event horizons. Interpreting the area as the entropy, we propose to use an area/entropy evolution principle to select a unique dynamical horizon and time slicing in the Cauchy evolution of an initial marginally trapped surface.Comment: Some references added, 5 pages, Phys. Rev. D, in pres

    Inner boundary conditions for black hole Initial Data derived from Isolated Horizons

    Get PDF
    We present a set of boundary conditions for solving the elliptic equations in the Initial Data Problem for space-times containing a black hole, together with a number of constraints to be satisfied by the otherwise freely specifiable standard parameters of the Conformal Thin Sandwich formulation. These conditions altogether are sufficient for the construction of a horizon that is instantaneously in equilibrium in the sense of the Isolated Horizons formalism. We then investigate the application of these conditions to the Initial Data Problem of binary black holes and discuss the relation of our analysis with other proposals that exist in the literature.Comment: 13 pages. Major general revision. Section V comparing with previous approaches restructured; discussion on the lapse boundary condition extended. Appendix with some technical details added. Version accepted for publication in Phys.Rev.

    Spherical Self-Similar Solutions in Einstein-Multi-Scalar Gravity

    Get PDF
    We consider a general non-linear sigma model coupled to Einstein gravity and show that in spherical symmetry and for a simple realization of self-similarity, the spacetime can be completely determined. We also examine some more specific matter models and discuss their relation to critical collapse.Comment: 11 pages, 1 figur

    Binary black holes in circular orbits. II. Numerical methods and first results

    Get PDF
    We present the first results from a new method for computing spacetimes representing corotating binary black holes in circular orbits. The method is based on the assumption of exact equilibrium. It uses the standard 3+1 decomposition of Einstein equations and conformal flatness approximation for the 3-metric. Contrary to previous numerical approaches to this problem, we do not solve only the constraint equations but rather a set of five equations for the lapse function, the conformal factor and the shift vector. The orbital velocity is unambiguously determined by imposing that, at infinity, the metric behaves like the Schwarzschild one, a requirement which is equivalent to the virial theorem. The numerical scheme has been implemented using multi-domain spectral methods and passed numerous tests. A sequence of corotating black holes of equal mass is calculated. Defining the sequence by requiring that the ADM mass decrease is equal to the angular momentum decrease multiplied by the orbital angular velocity, it is found that the area of the apparent horizons is constant along the sequence. We also find a turning point in the ADM mass and angular momentum curves, which may be interpreted as an innermost stable circular orbit (ISCO). The values of the global quantities at the ISCO, especially the orbital velocity, are in much better agreement with those from third post-Newtonian calculations than with those resulting from previous numerical approaches.Comment: 27 pages, 20 PostScript figures, improved presentation of the regularization procedure for the shift vector, new section devoted to the check of the momentum constraint, references added + minor corrections, accepted for publication in Phys. Rev.

    Nonrotating black hole in a post-Newtonian tidal environment

    Full text link
    We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.Comment: 27 pages, 1 figur

    A spin-4 analog of 3D massive gravity

    Get PDF
    A 6th-order, but ghost-free, gauge-invariant action is found for a 4th-rank symmetric tensor potential in a three-dimensional (3D) Minkowski spacetime. It propagates two massive modes of spin 4 that are interchanged by parity, and is thus a spin-4 analog of linearized "new massive gravity". Also found are ghost-free spin-4 analogs of linearized "topologically massive gravity" and "new topologically massive gravity", of 5th- and 8th-order respectively.Comment: 16 pages, v2 : version published in Class. Quant. Gra
    corecore