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Inner boundary conditions for black hole initial data derived from isolated horizons
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We present a set of boundary conditions for solving the elliptic equations in the initial data problem for
space-times containing a black hole, together with a number of constraints to be satisfied by the otherwise
freely specifiable standard parameters of the conformal thin sandwich formulation. These conditions
altogether are sufficient for the construction of a horizon that is instantaneously in equilibrium in the sense
of the isolated horizons formalism. We then investigate the application of these conditions to the initial
data problem of binary black holes and discuss the relation of our analysis with other proposals that exist
in the literature.
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I. INTRODUCTION

The problem of determining appropriate initial data for
binary black holes is of crucial importance in order to
construct successful numerical simulations for these astro-
physical systems [1]. Starting with Einstein field equations,
a specific strategy for this problem consists in solving the
relevant elliptic equations on an initial Cauchy surface
where a sphere S has been excised [2] for each black
hole (inner boundary). The purpose of the present work
is to present a set of inner boundary conditions inspired by
purely geometrical considerations, inasmuch as they are
derived from the formalism of isolated horizons (IH) [3–
8], and which guarantee that the excised sphere is in fact a
section of a quasiequilibrium horizon.

A pioneering work on this inner boundary problem was
presented by Cook in Ref. [9], in the context of formulating
a definite full prescription for the construction of initial
data for binary black holes in quasicircular orbits. The
assumptions made in that analysis permit one to determine
a proper set of conditions for a quasiequilibrium black
hole. However, at least intuitively, one would expect that
the isolated horizons formalism, which is mainly a system-
atic characterization of the notion and properties of qua-
siequilibrium horizons, could supply a more powerful and
consistent framework for discussing the conditions in this
black hole regime. Actually, the spirit in Ref. [9] closely
resembles that encoded in the isolated horizons scheme,
but does not fully capture it. Therefore, in this specific
sense, the quasiequilibrium horizon analysis may be re-
fined. With this motivation, we will truly adopt here the
isolated horizons formalism as the guideline of a geomet-
rical analysis whose ultimate goal is the ab initio numerical
construction of an isolated horizon. This strategy provides
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us with a rigorous mathematical and conceptual framework
that systematizes the physical assumptions.

For the sake of clarity, we have considered it important
to provide a relatively self-contained presentation, even at
the cost of lengthening the article. The rest of the work is
organized as follows. As in Refs. [9,10], we use a confor-
mal thin sandwich (CTS) approach to set the initial data
problem; thus Sec. II briefly reviews the basics of this
approach. Section III introduces the main ideas of the
isolated horizons framework and underlines the impor-
tance of its hierarchical structure by first introducing non-
expanding horizons (NEH) and then weakly isolated
horizons (WIH). Boundary conditions on the horizon are
derived in Sec. IV. Section V discusses the relationship of
this approach with that of Ref. [9]. Finally, Sec. VI presents
the conclusions.

II. CONFORMAL THIN SANDWICH APPROACH
TO INITIAL DATA

In this section we formulate the problem that will be
analyzed in this work and introduce our notation. We will
use Greek letters ��; �; . . .� for Lorentzian indices, inter-
mediate Latin letters �i; j; . . .� for spatial indices on a
Cauchy slice, and Latin letters from the beginning of the
alphabet �a; b; . . .� for coordinates on a two-dimensional
sphere S2.

Adopting a standard 3� 1 decomposition for general
relativity (see, e.g., Ref. [11]), the space-time M with
Lorentzian metric g�� is foliated by spacelike hypersurfa-
ces �t parametrized by a scalar function t. The evolution
vector t�, normalized as t�r�t � 1, is decomposed in its
normal and tangential parts by introducing the lapse func-
tion � and the shift vector ��,

t� � �n� � ��; (1)

where n� � ��r�t is the unit timelike vector normal to
�t and n��� � 0.
-1  2004 The American Physical Society



1In the following expressions, objects with an over-tilde are
associated with the conformal metric ~�ij. They are consistent
with the conformal rescalings in Ref. [14], rather than with those
originally introduced in Refs. [12,13].
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Denoting by �ij the induced metric on �t, the
Lorentzian line element reads

ds2 � g��dx�dx�

� ��2dt2 � �ij�dx
i � �idt��dxj � �jdt�: (2)

The embedding of the hypersurfaces �t in the four-
geometry is encoded in the extrinsic curvature:

K�� � �
1

2
Ln��� � ���

�r�n�; (3)

which can also be expressed as

Kij � �
1

2�
�@t�ij �Di�j �Dj�i�; (4)

where Di is the connection associated with �ij.
Under the 3� 1 decomposition, Einstein equations split

into two sets: evolution and constraint equations. In vacuo,
the case that we are interested in, the evolution equations
are

@tKij �L�Kij � ��Rij � 2KikKk
j � KKij� �DiDj�;

(5)

where K is the trace of Kij (K � �ijKij). On the other
hand, the constraint equations (respectively, Hamiltonian
and momentum constraints) are expressed as

R� K2 � KijK
ij � 0; (6)

Dj�Kij � �ijK� � 0: (7)

In brief, the initial data problem consists in providing
pairs ��ij; Kij� that satisfy the constraints (6) and (7) on an
initial Cauchy surface �t.

The discussion of the notion of quasiequilibrium de-
mands a certain control on the time evolution of the
relevant fields. The conformal thin sandwich introduced
in Refs. [12,13] is particularly well suited, since it provides
an approach to the initial data problem that consistently
incorporates (a part of) the time derivative of the metric,
together with the lapse and the shift.

The CTS approach starts by conformally decomposing
the metric and the extrinsic curvature, the latter expressed
in terms of its trace K and a traceless part Aij,

�ij � �4~�ij; Kij � ��4Aij �
1

3
K�ij: (8)

In this expression the conformal factor � is given by

� �

�
�
f

�
1=12

; (9)

where � is the determinant of �ij and f is the determinant
of fij, an auxiliary time-independent metric, @tfij � 0,
which captures the asymptotics of �ij [14].
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Substituting the above decomposition of �ij in relation
(4) and taking the trace, we find1

@t� � �i ~Di��
�

6
� ~Di�

i � �K�: (10)

This expression will play an important role when setting
the appropriate boundary conditions in Sec. IV.

With Eq. (8), the Hamiltonian constraint (6) can be
written as an elliptic equation for the conformal factor:

~D i
~Di� �

�

8
~R��5

�
1

8
~AijA

ij �
K2

12

�
; (11)

whereas the momentum equation is expressed as an elliptic
equation for the shift

~Dj
~Dj�i �

1

3
~Di ~Dj�

j � ~Ri
j�

j � � ~L��ij ~Dj ln���
�6�

�
4

3
� ~DiK � ~Dj@t ~�

ij � @t ~�
ij ~Dj ln���

�6�; (12)

where ~Aij � ~�ik ~�jlAkl, ~Di is the connection associated
with ~�ij, and � ~L��ij � ~Di�j � ~Dj�i � 2

3
~Dk�k ~�ij.

Only the conformal part ~�ij of the metric �ij encodes
dynamical degrees of freedom. This suggests solving the
trace of the evolution equations (5) together with the con-
straints, defining in this way an enlarged problem on the
initial surface [13]. This additional equation turns out to be
elliptic in its dependence on the lapse �,

~Di
~Di�� 2 ~Di ln� ~Di� � �4

�
�
�
~AijA

ij �
K2

3

�

� �i ~DiK � @tK
�
: (13)

An extra justification to add this equation is because it
straightforwardly permits one to impose the condition
@tK � 0, a good ansatz for quasiequilibrium. In this ex-
tended problem the constrained parameters are given by
��; �i; �� and the free data on the initial Cauchy surface
are �~�ij; @t ~�ij; K; @tK�, subject to the constraints
det�~�ij� � f and ~�ij@t ~�ij � 0 [in the strict initial data
problem �

�6 is a free parameter on the initial slice, but
here it is constrained owing to Eq. (13)]. Hence, the inner
boundary problem presented in the Introduction reduces to
the search for appropriate boundary conditions for �, �i,
and � imposed on the horizon.

III. ISOLATED HORIZONS FORMALISM

In this section we will motivate the introduction of the
notion of isolated horizon and summarize the concepts and
definitions that will be employed in Sec. IV. We will try to
-2
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provide a presentation as accessible as possible for a broad
community. For a detailed and more rigorous discussion of
the IH formalism see, e.g., Ref. [7] or Ref. [15].

The physical scenario that the IH construction attempts
to describe is that of a dynamical space-time containing a
black hole in equilibrium, in the sense that neither matter
nor radiation cross its horizon. This scenario applies as an
approximation for each of the two black holes in a binary
before their merger, provided that they are sufficiently
separated, therefore justifying the relevance of the IH
formalism for the initial data problem of binary black
holes.

A very important feature of the IH formalism is its
(quasi)local character. In our context, the need of a
(quasi)local description is motivated first by the way in
which numerical simulations are designed from a 3� 1
approach, in which we do not have a priori control on
global space-time properties, and secondly by the desire of
characterizing physical parameters of the black hole as
well as the concept of equilibrium in a (quasi)local manner.
The notion of apparent horizon, with a local characteriza-
tion as an outermost marginal trapped surface2 in a three-
slice, seems an adequate starting point. However, to in-
clude the concept of equilibrium we must somehow con-
sider the evolution of this two-dimensional surface. In the
(quasi)equilibrium regime, the notion of the world tube of
an apparent horizon does in fact make sense (there are no
jumps). Actually, an IH implements the idea that an appar-
ent horizon associated with a black hole in equilibrium
evolves smoothly into apparent horizons of the same area,
in such a way that the generated world tube is a null
hypersurface. This null character encodes the key quasie-
quilibrium ingredient, and is essentially linked to the idea
of keeping constant the area of the apparent horizon.

Inspired by these considerations, the definition of IH
tries to seize the fundamental ingredients of the null world
tube of a nonexpanding apparent horizon. In doing this, the
world tube is endowed with some additional geometrical
structures that are intrinsic to the null hypersurface [8]. The
specific amount and nature of these extra structures depend
on the physical problem that one wants to address. This
introduces a hierarchy of structures in the formalism which
turns out to be very useful for keeping track of the hypoth-
eses that are assumed to hold, as will become evident in
Sec. IV.

Before describing these structures, let us emphasize the
change of strategy with respect to Sec. II: while there the
relevant geometry was that of the initial-data spacelike
three-surface, the relevance corresponds now to a null
three-geometry. The combined use of these two comple-
mentary perspectives, each of them suggesting their own
2That is, a surface S in �t on which the expansions  �l� and  �k�
of the outgoing and ingoing null vectors, l� and k�, respectively,
satisfy  �l� � 0 and  �k� < 0.
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natural geometrical objects, will prove to be specially
fruitful.

A. Nonexpanding Horizons

1. Definition

A first level in the hierarchy of structures entering the IH
formalism is the notion of nonexpanding horizon, which
incorporates the idea of quasiequilibrium sketched above.
We say that a hypersurface � in a vacuum space-time
�M; g��� is a NEH if [8]
(i) I
3Here
4The

-3
t is a null hypersurface with S2 � �I 	 R� topol-
ogy. That is, there exists a null vector field l� on �,
defined up to rescaling, such that g��l�v� � 0 for
all vectors v� tangent to �. The degenerate metric
induced on � by g�� will be denoted by q��.
(ii) T
he expansion  �l� � q��r�l� of any null normal
l� vanishes on �.3
(iii) E
instein equations are satisfied on �.

Matter can be included without problems in the scheme,
but we will focus here on the vacuum case.

2. Main consequences for our problem

Let us first note that the cross sections S ’ S2 of the
NEH are not necessarily strict apparent horizons since they
are not imposed to be outermost surfaces and no condition
is enforced on the expansion  �k� of the ingoing null vector
k� (see footnote 2). Abusing the language, we will, how-
ever, refer throughout to the cross sections as apparent
horizons, a practice ultimately justified in our problem by
a sensible choice of freely specifiable data on the initial
surface.

(a) Constant area.—Owing to the null character of �,
any null generator l� defines a natural evolution on the
hypersurface, in such a way that the area of the apparent
horizons (a �

R
S d

2V �
R
S

���
q

p
d2q, where we use the

natural metric qab on S induced by q��) does not change,
since Ll�ln

���
q

p
� �  �l� � 0. Therefore, there is a well-

defined notion of radius of the horizon, R� �
���
a

p
=�4"�.

(b) Surface gravity.—Since l� is null and normal to �, it
can be shown to be pregeodesic and twist free. Hence,4

rll
� �

4 #�l�l
�; (14)

where #�l� is a function on � that will be referred to as
surface gravity (see the Appendix).

(c) Second fundamental form ��� on � and evolution
Killing vector on �.—We introduce the second fundamen-
tal form of � [16]

��� �
1

2
P�

�P
�
�Llq�� �

1

2
q��q

�
�Llq��; (15)

where P�
� � %�� � k�l� and q�� � %�� � k�l� � l�k�,
q�� is any tensor satisfying q�'q��q'� � q��.
symbol �

4 denotes equality on the horizon �.



5The one-form !� encodes some of the components of a
connection r̂ on � compatible with the degenerate metric q��
[16]. This connection r̂ is in fact unique as a consequence of the
NEH definition. The stronger condition �Ll; r̂� � 0 defines a
Strongly Isolated Horizon, a much more rigid structure.
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with k�l
� � �1. This is an essentially two-dimensional

object living on apparent horizons, such that  �l� � ��
�,

while

�ab �
1

2
 �l�qab � '�l�ab (16)

defines the shear '�l�ab associated with l�. Since Einstein
equations hold on �, so does the Raychaudhuri equation.
In vacuo, and since the twist of l� cancels, it has the form

L l �l� � #�l� �l� �
1

2
 2�l� � '�l�ab'�l�

ab: (17)

The vanishing of  �l� throughout � (so that, in particular,

Ll �l� �
4
0) implies then the vanishing of the shear '�l�ab.

As a consequence, ��� �
4
0. From Eq. (15) we then see

that, on �, q�� is Lie-dragged by the null vector l�.
Therefore, although in general there is no Killing vector
of the full space-time, the induced metric on � admits an
intrinsic Killing symmetry. This fact extracts from the
stronger notion of Killing horizon [17] the relevant part
for our problem.

(d) Connection !�.—The vanishing of ��� and the fact
that l� is normal to � suffice to define a one-form !�

intrinsic to �, such that

v�r�l� �
4 v�!�l� (18)

for any vector v� tangent to �. This one-form provides a
strategy for computing #�l� in Eq. (14):

#�l� �
4 l�!�: (19)

In addition, we will see that it plays a central role in
introducing the next level of the IH hierarchy of structures.

(e) Transformations under rescaling of l�.—For later
applications, let us also summarize the transformation of
the main geometrical objects under a rescaling of l� by a
function ) on �. Under a change l� ! )l�, we find

q�� ! q��; !� ! !� � P�
�r� ln);

��� ! )���; #�l� ! )#�l� � l�r�):
(20)

It is obvious from these expressions that the characteriza-
tion of NEH does not depend on the rescaling of l�.

3. 3� 1 perspective of nonexpanding horizons

As discussed above, we want to cope with intrinsic
evolution properties of apparent horizons. However, in
contrast with the previous discussion on NEH, in our initial
data problem we only dwell on a given spatial slice (at
most, on two infinitesimally closed slices in the CTS), not
on the whole world tube. Therefore, we must find a pro-
cedure to characterize an apparent horizon as a section of
an IH by only using information on the initial spatial slice.
From the NEH definition, a NEH of infinitesimal width is
implemented if, together with the condition  �l� � 0, we
124036
are able to enforce Ll �l� � 0 on the initial sphere S. The
Raychaudhuri equation (17) leads then to the characteriza-
tion given in Ref. [18], that can be expressed as The
infinitesimal world tube of an apparent horizon S is a
NEH if and only if the shear '�l�ab of the outgoing null
vector vanishes on S.

Of course, if we want to extend the NEH character to a
finite world tube, we need to find a way to impose these
conditions on a finite evolution interval, something that is
not possible in the initial data problem. At least, this
instantaneous notion of equilibrium must be completed
with a proper choice of dynamical content in the free
data on the initial Cauchy surface. Summarizing, we see
from Eq. (16) that the condition that we must impose on the
sphere S in �t in order to have a section of a NEH is

�abjS � 0; (21)

where the symbol jS stands for evaluation on S.

B. Weakly isolated horizons

A NEH describes a minimal notion of quasiequilibrium,
but it is not rich enough for allowing the assignment of
well-defined physical parameters to the black hole. In order
to do so, we must endow the horizon with extra structure.
Noting that the key property of the NEH is that l� is a
Killing vector of the metric induced on the horizon, a way
to introduce new structure consists in enforcing that other
objects are Lie dragged by l�.

A simple choice in this sense, that permits a Hamiltonian
analysis leading to (quasi)local physical quantities associ-
ated with the black hole, is to demand that Ll!� �

4
0.

However, the transformation rule of !� in Eq. (20) pre-
cludes this condition to hold for every null normal l�.
Nonetheless, a consistent way to impose it is by introduc-
ing the notion of weakly isolated horizon5:

A weakly isolated horizon is a NEH endowed with an
equivalence class �l�� of null normals (l0� and l� belong to
the same class if and only if l0� � cl� with c a positive
constant) such that

L l!� �
4
0: (22)

This condition turns out to be equivalent to (see the
Appendix)

d�#�l�� �
4
0; (23)

so that the zeroth law of black hole thermodynamics,
#�l� � const, characterizes the WIH notion.
-4
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It is worth commenting that, given a NEH, it is always
possible to select a class of null normals �l�� such that �
becomes a WIH. Actually there exists an infinite freedom
in the construction of the WIH structure [8]. Namely, if the
surface gravity #�l� is a (nonvanishing) constant for a
certain class of null normals �l��, the same happens for
any of the classes obtained by the nonconstant rescaling

l̂ � �
4
�1� B� ;,�e�#�l�v�l�; (24)

where B� ;,� is an arbitrary function on S and v is a
coordinate on � compatible with l�, i.e., Llv �

4
1. In fact,

the above rescaling does not modify the constant value of
the surface gravity [this follows from the transformation
rule for #�l� in Eq. (20)].

Since it is always possible to find WIH structures on a
given NEH, the WIH concept does not correspond to a real
restriction on the physics of the system. However, it does
impose a restriction on the space-time slicing by the hyper-
surfaces �t introduced in Sec. II if we tie l� to t, i.e., if we
impose that there is a member l� of the WIH class �l��
such that Llt �

4
1. We call such a slicing a WIH-

compatible slicing.
The derivation of the mass and angular momentum

expressions for a WIH using Hamiltonian techniques is
beyond the scope of this work (see Refs. [6,7]). Here, we
will simply extract those points which are relevant for our
analysis. The general idea is to characterize physical pa-
rameters as conserved quantities of certain transformations
that are associated with symmetries of the WIH. A vector
field V� tangent to � is said to be a symmetry of the
particular WIH under consideration if it preserves its
equivalence class of null normals, the metric q��, and
the one-form !�, namely,

L Vl
� �

4 const � l�; LVq�� �
4
0; LV!� �

4
0:

(25)

In Sec. IV we will be interested in nonextremal black holes,
for which #�l� � 0. In that case, the general form of a WIH
symmetry is [7]

V� � cVl
� � bVS

�; (26)

where cV and bV are constant on � and S� is an isometry of
the apparent horizon S.

The definition of the conserved quantities goes first
through the construction of an appropriate phase space
for the problem and then through the analysis of canonical
transformations on this phase space [7]. An important point
is that the relevant transformations are generated by diffeo-
morphisms in space-time whose restriction to the horizon
� are symmetries of the WIH in the sense of (25).

1. Angular momentum

In order to define a conserved quantity that we can
associate with a (quasi)local angular momentum, we as-
124036
sume that there exists an azimuthal symmetry on the
horizon � (actually, this hypothesis can be relaxed; see
in this sense Ref. [15]). Therefore, we assume the existence
of a vector ’� tangent to S 	 �, which is a SO(2) isome-
try of the induced metric qab with 2" affine length.

The conserved quantity associated with an extension of
’� to the space-time is given by [7]

J� � �
1

8"G

Z
S
’�!�d2V �

1

8"G

Z
S
si’jKijd2V;

(27)

where for convenience we have expressed it in terms of
objects in the 3� 1 decomposition. In particular, si is the
outward (pointing towards spatial infinity) unit vector field
in �t normal to the apparent horizon S.

2. Mass and boundary condition for t�

The definition of the mass is related to the choice of an
evolution vector t� with appropriate boundary conditions,
namely, that t� ! �@t�

� at spatial infinity and t� ! l� �
�t’

� with l� 2 �l�� and �t constant on the horizon (note
that t�j� is a WIH symmetry). The determination of the
mass expression proceeds in two steps.

First, the vector t� has to satisfy certain conditions to
induce a canonical transformation on the phase space. This
turns out to be equivalent to the first law of black hole
thermodynamics [6,7], whose practical consequence for us
is that the mass M, the surface gravity #�l�, and the angular
velocity �t depend only on the radius R� and the angular
momentum J� of the black hole,

M � M�R�; J��; #�l� � #�l��R�; J��;

�t � �t�R�; J��;
(28)

but without determining the specific functional form. It is
worth emphasizing that this dependence on R� and J�
(though arbitrary in principle) must be the same for all
solutions to the Einstein equations containing a WIH.

In a second step, this dependence is fixed to coincide
with that found in the stationary Kerr family of black holes.
This is not an arbitrary choice, but a normalization con-
sistent with the stationary solutions. Technically, this is
accomplished by requiring that, at the horizon �, t� �
�t’

� reproduces just the null normal (in the considered
class �l��) whose surface gravity equals that of the Kerr
case, something that is always possible in the nonextremal
situation via a constant rescaling. This singles out a vector
t�o , satisfying

t�o ��Kerr�R�; J��’
� �

4 cl� � l�o ; (29)

with

c �
#Kerr�R�; J��

#�l�
(30)

as the evolution vector used for the derivation of the mass
-5
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formula. The final expressions obtained in this way for the
physical parameters of the horizon are

M� � MKerr�R�; J�� �

���������������������������
R4
� � 4G2J2�

q
2GR�

;

#� � #Kerr�R�; J�� �
R4
� � 4G2J2�

2R3
�

�������������������������
R4
� � 4GJ2�

q ;

�� � �Kerr�R�; J�� �
2GJ�

R�

�������������������������
R4
� � 4GJ2�

q :

(31)
6Although the derivation of J� actually involves a WIH
structure, its expression can be shown to be already well defined
for a NEH.
IV. DERIVATION OF THE BOUNDARY
CONDITIONS

We are now in an adequate situation to derive boundary
conditions for the elliptic equations in Sec. II. In doing so,
we adopt a coordinate system �t; xi� stationary with respect
to the horizon, in the sense that the null tube � can be
identified as the hypersurface r�xi� � const for a certain
function r which is independent of t. It can be shown that
this happens if and only if t� is chosen tangent to �, i.e.,
l�t

� �
4
0.

Since we want to have a notion of angular momentum
for the black hole, following the discussion in Sec. III B 1
we make the hypothesis that our physical regime permits
the imposition of an axial isometry ’a on S ’ S2 	 �.
Even though this is a strong physical hypothesis (especially
when having in mind binary black holes), we must empha-
size that the bulk space-time will still be generally dynami-
cal in an arbitrarily close neighborhood of the horizon and
that ’� does not need to extend to an isometry there.

To construct the equilibrium black hole on S, we follow
the steps dictated by the hierarchy of the IH formalism.

A. Adapting the evolution vector to the horizon

Aiming at imposing the NEH structure, but already
motivated by the boundary condition for the evolution
vector selected by the determination of t�o , we adapt t�

to the horizon by relaxing to a NEH the particular WIH
structure implicit in Eq. (29). That is, we only impose

t� ���’� �
� l�; (32)

where the proportionality needs not be given by a constant
on �. Using the proportionality

l� � �n� � s�� (33)

(where s� is again the outward unit spatial vector normal to
S) and the decomposition (1) of t� in terms of the lapse and
shift, we conclude

�i �
4 �si ���’i; (34)

from which boundary conditions for the shift on S imme-
diately follow.
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Actually, the choice of stationary coordinates with re-
spect to the horizon automatically leads to the expression
�i �

4 �si �Wi, where Wi is an arbitrary vector tangent to
S. So, here we enforce Wi to be precisely ��’i, a choice
that will in fact simplify the imposition of the NEH
structure.6

B. Nonexpanding horizon condition

We now properly impose the NEH condition. As men-
tioned in Sec. III A 3, in this initial data problem we
demand S to be a slice of a NEH of infinitesimal width.
For this, we impose condition (21). Owing to the rescaling
property (20) of ��� under an arbitrary (not necessarily
constant) rescaling of l�, and taking advantage of the t�

adaptation to the horizon implemented by the shift bound-
ary conditions, we can write

q��q��L�t���’�q�� �
4
0: (35)

In our stationary coordinates with respect to the horizon,
this simply reads

0 �
4
2�ab �

4 @tqab ���L’qab: (36)

But, under our hypothesis about the existence of an axial
isometry on the horizon, the second term must vanish on its
own: L’qab �

4
0. Using qab �

4 �ab (for angular covariant
components) we find

@t�ab �
4
0; L’�ab �

4
0: (37)

In particular, the restrictions must hold on S. These are the
NEH boundary conditions. Note that their simple form
depends critically on the specific choice made for Wi in
the previous subsection.

Using now the conformal decomposition of the metric,
these conditions translate into

�4~�ab@t���@t ~�ab�jS � 0; (38)

�4~�abL’���L’ ~�ab�jS � 0: (39)

The crucial feature, and the ultimate reason for using the
CTS, is that these conditions can be satisfied by an appro-
priate choice of the free data ~�ab and @t ~�ab. Condition
(39), expressing the axial symmetry of the horizon, must be
enforced by a self-consistent selection of the free data ~�ab
on S (� is a functional of ~�ij). Regarding (38), if we first
take its trace with respect to the conformal counterpart of
the metric qab induced on S, ~qab � ��4qab (satisfying
~qac ~�cb � %ab) and then use Eq. (10) for @t�, we find
(calling trS _~� � ~qab@t~qab �

4 ~qab@t ~�ab)
-6
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�i ~Di��

�

6

�
~Di�

i � �K �
3

4
trS _~�

�
��������S
� 0: (40)

In addition, from Eq. (38) it follows that the ~q-traceless
part of @t ~�ab must vanish. Therefore, on the boundary S,
this part of the free data has the form�

@t ~�ab �
1

2
trS _~�~�ab

���������S
� 0: (41)

Condition (40) is an inner boundary condition for �.
Since we have imposed on S the Dirichlet boundary con-
ditions (34) on �i, we have no direct control on the sign of
~Di�

i there. In order to guarantee the positivity of � via the
application of a maximum principle, the factor multiplying
� in Eq. (40) should be non-negative. The analytical study
of this issue goes beyond the present geometrical deriva-
tion (see Ref. [19] for a discussion on this point in a related
context). We simply comment that the choice of free data
for trS _~� [and, more indirectly, that of the radial compo-
nents of the free data ~�ij, which determine si � �ri=

�������
�rrp

in condition (34)] could play a key role in ensuring that
Eq. (40) is a well-posed condition.

Except for the implicit use of a well-defined concept of
angular momentum based on the WIH formalism, the
notion of quasiequilibrium provided by the NEH structure
has proved to be sufficient to set boundary conditions for
the initial data problem, since it prescribes boundary values
for � (Hamiltonian constraint) and �i (momentum con-
straint). If this is the problem that we want to solve, we can
stop here. However, if we want to solve also the trace of the
evolution equations, we need to find appropriate boundary
conditions for the lapse. We will show how the existence of
a WIH structure can be exploited with that aim.

C. Weakly Isolated Horizon condition

As we have commented, given a NEH one can always
find a class of null normals so that it becomes weakly
isolated. In fact, the determination of this class is not
unique, but there exists an infinite freedom of choice. In
this subsection, we will first discuss the restrictions on the
lapse function that follow from the introduction of a WIH-
compatible slicing and then employ the freedom in the
choice of WIH to suggest possible boundary conditions for
the lapse that are specially suitable for numerical
integration.

Let us start by choosing l�o as the representative of the
class of null normals for the WIH, �l��. The inner boundary
condition (29) employed in the determination of the mass
formula then singles out an evolution vector t�o on the
horizon. We proceed as in Sec. IVA, but imposing t� to
coincide exactly with t�o , therefore demanding that the ��t�
foliation constitutes a WIH-compatible slicing. According
to the characterization (23) of the WIH notion, the surface
gravity #�l� is constant. We further assume #�l� � 0, thus
restricting the analysis to the nonextremal case. We write
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l�o in terms of 3� 1 objects,

l�o � �~l� � ��n� � s��; (42)

where we have explicitly defined the vector ~l�. Again, the
introduction of the lapse and shift decomposition for t�o in
Eq. (29) leads to the boundary conditions (34) for the shift.
In order to analyze the conditions on �, we calculate the
expression for #�lo�. We proceed in several steps.
(1) C
-7
ontracting Eq. (18), particularized to the one-form
~!� associated with ~l�, with the ingoing null covec-
tor ~k� � �n� � s��=2 and expanding the resulting
expression, we find for any vector v� tangent to �,

v� ~!� �
4 v�s�r�n�: (43)

Employing the definition of the extrinsic curvature
(3) and the identity n�r�n� � ��

�r� ln�, we get

v� ~!� �
4
�v�s��K�� � n��

�
�r� ln��: (44)
(2) T
aking ~l� as the tangent vector v� and remembering
expression (19), we obtain

#�~l� �
4 ~l� ~!� �

4 s�r� ln�� s�s�K��: (45)
(3) R
ecalling then the transformation (20) of the surface
gravity under a rescaling of the null normal,

#�lo� �
4 ��s�r� ln�� s�s�K��� � l�or� ln�:

(46)
(4) F
inally, imposing that #�lo� equals #Kerr�R�; J��, we
find

#Kerr�R�; J�� �
4 siDi�� sisjKij��Llo ln�:

(47)
This restriction, arising from the WIH-compatible slicing
condition, can be regarded as an evolution equation for the
lapse on the horizon. Properly speaking, it is not a bound-
ary condition for the initial data, because it contains the
derivative of the lapse in the direction of l�o .

Actually, by exploiting the freedom of choice in the
WIH structure, one can freely set the value of the lapse
on the initial section of the horizon S. This is a conse-
quence of the fact that, from Eq. (24) and the relation l�o �

�~l�, a change of WIH structure results in a rescaling of the
lapse:

�̂ �
4
�1� B� ;’�e�#Kerr�R�;J��t��: (48)

Since S can be identified, e.g., with the section t � 0 of �,
the initial value of the lapse on the horizon gets multiplied
by an arbitrary positive function on the sphere. Therefore,
it can be chosen at convenience, at least as far as the
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demand for a WIH-compatible slicing is concerned. In
fact, if we were solving an evolution problem by following
a constrained scheme (see, e.g., Ref. [14]), this initial
choice for � together with Eq. (47) might be used to set
inner boundary conditions for the lapse at each time step.

Once one realizes the freedom in the choice of the initial
value for � on S that follows from the dynamical character
of Eq. (47) on �, one may ask whether it is possible to
benefit from this arbitrariness and put forward a particular
proposal for the choice that could be considered specially
advantageous. In this sense, one would like to ensure that,
under evolution on �, the lapse will neither increase ex-
ponentially nor decrease to (zero or) negative values.
Apparently, the best way to favor this, at least locally, is
to pick up, among the infinite WIH structures, that in which
the Lie derivative of the lapse with respect to the null
normal vanishes initially: �Llo��jS � 0. Using Eq. (48),
one can prove under very mild assumptions that such a
choice of WIH structure exists. Adopting it, Eq. (47) be-
comes a true boundary condition for the lapse on S:

�siDi�� sisjKij��jS � #Kerr�R�; J��: (49)

Note in fact that, to deduce this condition, one only
needs to demand [in the passage from Eq. (46) to
Eq. (47)] that #�lo� coincides with the constant
#Kerr�R�; J�� on S, and not on the whole of �, because
one finally restricts his attention just to the initial section of
the horizon. As a consequence, and in contrast with the
situation found for the NEH conditions, the above pre-
scription for the lapse on the boundary is only a necessary
condition for specifying a WIH of infinitesimal width. The
extra condition that #�lo� be constant in the rest of �,
namely �Llo#�lo��jS � 0, would involve the evolution
equations and the second time derivative of the lapse,
and therefore cannot be imposed in terms of the initial data.

Finally, we comment that an alternative way of dealing
with the WIH condition #�l� � const would consist in
choosing a priori the values of � and Llo� on S and
then interpreting Eq. (47) as a constraint on the free data
on the inner boundary.

D. Binary quasicircular orbits

In the previous subsections we have characterized the
quasiequilibrium state of each horizon exclusively in local
terms. However, the study of a binary black hole in quasi-
circular orbits requires, in addition, a global notion of
quasiequilibrium. In the general case, such a global quasi-
stationary situation is described by the existence of a global
quasi-Killing vector L�. In the binary black hole case, this
is a helical vector (see Refs. [10,20]) that Lie drags the
horizons, i.e., L�j� is tangent to each horizon �. Imposing
asymptotic flatness, we have at spatial infinity L� ! t�1 �
�orb,

�
1, where t�1 and ,�

1 are vectors associated with an
asymptotic inertial observer and �orb is the orbital angular
velocity. We can adapt the coordinate system, introducing
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an evolution parameter t0 such that L� � �@t0 �
�. In such a

case, with the 3� 1 decomposition L� � �0n� � �0�,
outer corotating boundary conditions follow

lim
r!1

�0i � �orb,
i
1; lim

r!1
�0 � 1; lim

r!1
� � 1:

(50)

In these coordinates, one chooses the time derivative part
of the CTS free data to vanish

@t0 ~�ij � 0; @t0K � 0: (51)

In the general case, L�j� and t�o defined in Eq. (29) do
not coincide. Since they are both tangent to the horizon,

L� �
4 �t�o � 5�; (52)

where � is a scaling factor and 5� is tangent to � with
5�n� � 0. As a consequence, if we adapt coordinates to
L�, hence using t0, the expressions given in the previous
subsections must be corrected. We will discuss two
possibilities.

(a) Corotating coordinate system (fully adapted to
L�).—From Eqs. (29) and (52) we can write

L� � ���’� � 5� �
4 �l�o : (53)

A natural ansatz for 5� is given by �orb,
�, where ,� is

the azimuthal vector tangent to each horizon and associ-
ated with the normal direction to the orbital plane. Since
�� provides a well-defined notion of rotation angular
velocity, we can define the corotating physical regime in
an intrinsic way as the case with � � 1 and �orb � ��,
from which L� �

4 l�o follows. More generally, proceeding
as in Sec. IVA we find

�0i �
4 �0si � ���’i � 5i: (54)

Imposing the axial symmetry on each horizon �, we
deduce again condition (39). Defining

6� � ���’� � 5�; (55)

the requirements �ab �
4
0 and @t0 ~�ij � 0 [see Eq. (51)]

leads then to the conditions	
�0i ~Di��

�

6
� ~Di�0i � �0K� �

1

8�3
~qcdL6�cd


��������S
� 0;

(56)

	
1

2
�~qcdL6�cd�~�ab �L6�ab


��������S
� 0; (57)

which replace Eqs. (40) and (41), respectively. Finally, the
condition for the lapse is still derived as in Sec. IV C. From
Eq. (52) it follows that�0 �

4 ��, and hence it can be shown
	siDi�

0 � sisjKij�
0

�


��������S
� #Kerr�R�; J��: (58)
-8
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Convenient ansätze for � and 5� must be introduced in
practice to cope with these conditions.

(b) Warped coordinate system.—An alternative choice
consists in adopting an evolution vector t� such that its
boundary value on each horizon coincides with t�o , but
adapts itself to L� at a typical distance % from them (in
this sense, the distance between the black holes provides a
natural length scale in the binary problem). Hence, this
vector t� interpolates between t�o and L�, warping the
coordinate system to better accommodate the physical
situation in each of the considered spatial regions (note
that the vector L� follows the translational motion,
whereas t�o is adapted to the intrinsic rotation on the
horizon). Of course such a coordinate system can remain
regular only for a finite amount of time (typically one
orbital period).

In practical terms, this coordinate system is defined by
the outer boundary conditions (50), without primes in �i

and �, and the inner boundary conditions (34) [on S], (40),
(41), and (49) on the constrained and free data. Moreover,
the function trS _~� does not have to vanish on S, therefore
helping to ensure the positivity of �, even though it must
be negligible at a distance of order %. Likewise, @tK and
the radial components @t ~�rj become roughly zero at a
distance % of each horizon. Thus, in this coordinate system,
the conditions on the horizons are easier to impose, there is
no need to worry about the factor �, and one gains control
over the positivity of �.

Once the time derivative part of the free data has been
fixed, either in the corotating or in the warped coordinate
system, one would have to consider the rest of the free data.
The choice of the conformal metric must be consistent with
restriction (39) [and (57) in corotating coordinates] and
subject to the constraint det�~�ij� � f. The adequate deter-
mination of the physical content of ~�ij goes beyond the
limited scope of this paper and must be addressed by
means of a proper analysis of the stationary regime for
the evolution equations (5).

As for gauge fixing, the Dirac gauge in Ref. [14] appears
to be a quite natural choice for the spatial one in the CTS
setting, whereas the boundary condition (40) might be
viewed to suggest a maximal slicing (K � 0) for the tem-
poral gauge in order to improve the control on the pos-
itivity of �. However, this latter gauge is not compatible
with coordinates of Painlevé-Gullstrand or Kerr-Schild
type, which are actually appropriate for the shift boundary
condition (34). We do not here subscribe to a particular
fixation of the gauge, allowing an optimal adaptation to
each case considered.
7We have obviated the discussion of Ref. [9] about the way to
enforce the horizon to remain in the same coordinate location, a
discussion that can also be simplified.
V. COMMENTS ON PREVIOUS APPROACHES

A. Cook’s 2002 proposal

Inner boundary conditions for the elliptic equations
(11)–(13) in the quasicircular regime of a binary black
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hole system were presented in Ref. [9]. The scheme pro-
posed in that work starts by imposing on each excised
sphere S the presence of a Killing horizon, together with
an apparent horizon condition,  �~l� �

4
0, where ~l� is de-

fined by Eq. (42). Denoting by 7� � �n� � ��s�s� the
component of t� orthogonal to S, the following quasiequi-
librium conditions were imposed:
(1) T
-9
he inner boundary S remains an apparent horizon:
L7 �~l� �

4
0.
(2) T
he expansion  �~k� associated with the ingoing null
vector ~k� � �n� � s��=2 does not change in time:
L7 �~k� �

4
0.
These conditions are enforced under the approximation,
motivated by the stationary case, that the shear '�~l� asso-
ciated with the outgoing null vector vanishes.

Before we actually compare the resulting boundary con-
ditions (or rather some ellaboration of them; see the last
part of this section) with those of Sec. IV, we make some
general remarks on the involved quasiequilibrium
conditions.

Under the vanishing shear approximation, the condition
L7 �~l� �

4
0 leads to ��s� �

4 �, thus making 7� a null
vector parallel to ~l�. In particular, this implies that the
underlying coordinate system is stationary with respect to
the horizon. Therefore, this condition is either redundant
with the vanishing shear approximation (via the
Raychaudhuri equation) or must be considered as a gauge
choice, and not as an actual quasiequilibrium condition.

More generally, in Ref. [9] the conceptual status of the
vanishing shear hypothesis is not clearly stated and an
explicit prescription for imposing it in terms of the initial
data, such as Eqs. (41) or (57), is missing. The IH analysis
shows that the vanishing of the shear is the key quasiequi-
librium condition: it guarantees that the world tube of
apparent horizons is a null hypersurface. More explicitly,
if '�~l� �

4
0 is not taken as a quasiequilibrium characteriza-

tion but only as an approximation that might occasionally
fail, the vector 7� is no longer necessarily null. As a
consequence, L7 �~l� �

4
0 would not really be a quasiequi-

librium condition (for instance, L7 �~l� vanishes also for
dynamical horizons [21], where 7� is spacelike).

Hence, as already pointed out in Refs. [15,18], the
approach of Ref. [9] is very close in spirit to that encoded
in the IH formalism; in fact, if the approximation of
vanishing shear is eventually satisfied, a NEH is actually
constructed. However, its quasiequilibrium conditions can
be refined7 (see Ref. [22] and Sec. VA). By contrast, a
virtue of our approach, fully based on the IH scheme, is a
clear identification and understanding of the physical and



8We thank G. B Cook for pointing out this fact that also
happens with the boundary conditions of Ref. [9].
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mathematical hypotheses that characterize the horizon
quasiequilibrium.

The need to clarify, from a conceptual point of view, the
quasiequilibrium hypotheses in Ref. [9] can be illustrated
as follows. In Ref. [23], the boundary conditions derived in
Ref. [9], identified as IH conditions, are disregarded as
technically too complicated. They are then substituted by a
heuristic set of conditions, involving in particular 0 �

@t ln
����
�

p
� Di�

i � �K. This condition, which is equiva-
lent to @t� � 0, turns out to be the NEH condition on the
conformal factor in the corotating physical regime [make
6� � 0 in Eq. (56)], under the quasiequilibrium bulk
condition @t ~�ij � 0 assumed in Ref. [23]. Besides, the
Kerr-Schild data (motivating the boundary values for the
shift in that reference) are consistent with Eq. (54). At the
end of the day, we find that the heuristic choice turns out to
be one which is truly in the spirit of the IH scheme. Let us
nonetheless mention that these boundary conditions are not
imposed on the horizon itself, but in its interior.

B. Addendum

After the first submission of this work, a paper by Cook
and Pfeiffer appeared [24] which provides a refinement of
the discussion and proposals made by Cook in Ref. [9]. We
now comment on the relation between our approach and
the quasiequilibrium and boundary conditions proposed in
Ref. [24] (and in [9]), in order to facilitate the comparison
of our results with those of that reference.

(1) Quasiequilibrium conditions.—Quasiequilibrium is
characterized in Ref. [24] by the geometrical conditions
 �~l� �

4 '�~l� �
4
0, which are exactly those required to con-

struct a NEH horizon, as discussed in Sec. IV B. Since no
other condition is imposed (the requirement L7 �~k� �

4
0 of

Ref. [9] is dropped), the analysis remains at the level of a
NEH in the IH hierarchy, whereas our approach explores
the WIH structure.

(2) Condition on �.—In Refs. [9,24], this boundary
condition follows from the requirement of vanishing ex-
pansion  �~l� for an apparent horizon. It is therefore essen-
tially equivalent to Eqs. (40) and (56). However, the
mathematical expression derived from  �~l� �

4
0 adopts dif-

ferent forms [see also Eq. (A13) in the Appendix].
(3) Condition on �i.—In corotating coordinates, the

boundary condition (79) of Ref. [9] essentially coincides
with our Eq. (54). A crucial refinement is introduced in
Ref. [24] by actually imposing that the shear vanish: the
projection of the shift on S [our vector �6� in Eq. (55)]
must be a conformal symmetry of ~qab. This is equivalent to
our condition (57) (see also the Appendix).

The main difference between both approaches is our
demand of an azimuthal symmetry ’� for the metric qab,
namely, Eq. (39). On the one hand, this makes conditions in
Ref. [24] more general than ours but, on the other hand,
thanks to this symmetry we are able to introduce a definite,
124036
intrinsic spinning angular velocity �� which, together
with �orb, permits one to analyze the rotational regime
of the system (corotational, irrotational, or general case).

In addition, the availability of �� naturally leads us to
consider Eq. (54) as a boundary condition on the shift. As a
consequence, Eq. (57) becomes a constraint on the free
data ~�ab and @t ~�ab, rather than providing a boundary
condition for 6� as in Ref. [24].

(4) Condition on �.—The analysis of a WIH carried out
in Sec. IV C shows that the initial boundary value for the
lapse is basically free. This conclusion is also reached in
Ref. [24] after a numerical study. It is worth discussing the
relation between the proposals that have been made for the
choice of this boundary value. Condition L7 �~k� �

4
0 in

Ref. [9] can be written as

�siDi�� sisjKij��jS � �
~D�
 �~k�

��������S
; (59)

with ~D defined in Eq. (85) of Ref. [9]. Our requirement
(49) and Eq. (59) are simultaneously satisfied only if
~D� � � �~k�#Kerr on S. This is a nontrivial identity, so
that both conditions are generally different.

Insight on their relation is provided by Ref. [8], where
the freedom in the construction of a WIH structure �l�� is
fixed by imposing that L�l� �k� �

4
0 (with k�l� � �1),

once it is assumed that a certain operator M which acts
on S has a trivial kernel [see Eq. (4.8) of Ref. [8] for the
definition of M and note its close connection with ~D]. This
analysis can be applied to study the possible degeneracy of
condition (59) in terms of the invertibility of M if, in
addition, it is satisfied that #�~l� is constant. If that is the
case, employing Eq. (45) one can check that conditions
(49) and (59) coincide only if the lapse is constant on the
boundary. More details on this issue will appear elsewhere.

Notice that the choice of representative made in a WIH
class via the lapse boundary condition (49) determines the
initial lapse once �ij and Kij are given. In this sense, the
condition for the lapse is not problematic by itself.
However, our full set of boundary conditions for �, �,
and �i, together with the choice of free data
�~�ij; @t ~�ij; K; @tK�, may not be sufficient to single out a
unique solution to the initial data problem. In fact, this
degeneracy seems to occur when our boundary conditions
are implemented in the spherically symmetric, time-
independent case if one uses a maximal slicing and a flat
conformal metric.8 Nonetheless, the presence of this de-
generacy may depend on the actual choice of initial free
data (e.g., isotropic coordinates in the commented ex-
ample). For each specific choice, it is generally only after
a numerical study that one may decide whether a degen-
eracy exists.
-10



INNER BOUNDARY CONDITIONS FOR BLACK HOLE . . . PHYSICAL REVIEW D 70, 124036 (2004)
VI. CONCLUSIONS

In this work we have explicitly shown how the IH
formalism provides a rationale for some aspects of the
numerical construction of initial data for a space-time
containing a black hole in local quasiequilibrium, with
special emphasis in the binary case.

The IH framework sheds light into the justification and
implications of already existing quasiequilibrium sets of
conditions for the analysis of this problem. The hierarch-
ical structure of the IH formalism permits a control on the
hypotheses that arise at each of the considered steps.

Adopting the IH approach fully, we have derived a set of
boundary conditions on each black hole horizon for solving
the elliptic equations obtained in a CTS scheme, deduced
from the constraints and the trace of the evolution part in
Einstein equations.

In a first step, the NEH condition characterizing quasie-
quilibrium (�ab �

4
0 ,  �l� �

4 '�l�ab �
4
0), together with

the choice of spatial coordinates stationary with respect
to the horizon, provides boundary conditions for the shift
[see Eqs. (34) and (54)] and the conformal factor [see
Eqs. (40) and (56)]. These conditions are basically equiva-
lent to those of Ref. [9] (at least in the recently refined form
presented in Ref. [24]). In a second step, the requirement
for a WIH-compatible slicing (#�l� �

4 const � 0) leads to
the evolution Eq. (47) for the lapse on �, leaving the choice
of its initial value essentially free. Once this point has been
acknowledged, we have tentatively suggested a specific
boundary condition for the lapse in Eq. (49), obtained by
fixing the freedom which is available in the construction of
a WIH structure. In addition to these boundary conditions,
the NEH requirement entails that the free data on the initial
slice fulfill, on the horizon, the constraints (41) [or (57) in
corotating coordinates] and (39) (assuming an axially sym-
metric horizon; see Ref. [25] otherwise). Similarly,
Eq. (47) could alternatively be seen as a constraint on the
free data if one decided to fix the lapse on �.

These inner boundary conditions and constraints are
sufficient conditions for constructing a black hole in in-
stantaneous quasiequilibrium. However, in order to obtain
black holes in quasiequilibrium during a finite evolution
time rather than just instantaneously (as required in the
quasicircular binary black hole problem), these conditions
must be complemented with appropriate free data that
encode the desired dynamical behavior.
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Barceló, G. B. Cook, J. Lewandowski, J. M. Martı́n-Garcı́a,
H. Pfeiffer, J. Pullin, and K. Uryu for helpful discussions.
J. L. J. acknowledges support from the Spanish MEC, and
G. A. M. M. was supported in part by funds provided by the
124036
Spanish MEC projects No. BFM2002-04031-C02 and
No. BFM2001-0213.

APPENDIX: SOME TECHNICAL DETAILS

In this appendix we explain some calculations and for-
mulas employed in the main text.

(a) Proof of Eq. (14). If � is defined as the hypersurface
r � const, its normal l� takes the form l� � )r�r for
certain function ). Then r��l�� � )�1l��r��). Con-
tracting with l�, we find

l�r�l� � l�r� ln)l�: (A1)

Equation (14) follows by identifying #�l� � l�r� ln).
(b) Proof of Eq. (18). Choosing the normalization of the

outgoing and ingoing null vectors l� and k� on � so that
k�l� � �1, the induced (degenerate) metric on � can be
written as

q�� � g�� � k�l� � l�k� � g�� � n�n� � s�s�: (A2)

Expressing Llq�� in terms of the connection r� and using
Eq. (A2), we get for the second fundamental form (15) the
formula

��� � q��q
�
�r�l�: (A3)

Expanding now q��q�� and recalling Eq. (14), we find

r�l� � ��� � l�k
�r�l� � �k�r�l� � l�k

�k�r�l��l�:

(A4)

Since, on a NEH, one has ��� �
4
0 (see the text), contrac-

tion with a vector v� tangent to � (so that v�l� �
4
0) leads

to Eq. (18) after defining

!� �
4
��k�r�l� � l�k�k�r�l�� � �P�

�k�r�l�:

(A5)

(c) Proof of Eq. (23). To demonstrate this equation
starting from condition (22), the key remark is the propor-
tionality between the exterior derivative of !� and the
volume two-form on the sphere S2 ’ S,

d! /
���
q

p
d2q: (A6)

This is a nontrivial result that follows from the definition of
NEH, and we refer the reader to Ref. [6] for its proof. As a
consequence, d! lives on S and its contraction with the
null normal of � vanishes: l�r��!�� �

4
0. Therefore, us-

ing the Cartan identity,

0 �
4
Ll!� � l�r��!�� � r��l

�!�� �
4
r�#�l�: (A7)

(d) General expression of �ab. In order to enforce the
condition �ab �

4
0, we have made use in the text of a

coordinate system that is stationary with respect to the
horizon, so that l� � t� �W� with W� tangent to S
(W� is the black hole surface velocity introduced by
-11
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Damour [16,26]). Then, we have considered several spe-
cific choices for t� on �, namely, the vector t�o singled out
in Eq. (29) for the warped coordinate system, or the quasi-
Killing vector L� for corotating coordinates. For the sake
of completeness, we now provide the general expression of
the second fundamental form on � for arbitrary vectors t�

and W�.
From the definition of ��� and Eq. (A2) we find

�ab �
1

2
�Ltqab � 2DaWb �

2DbWa�

�
1

2
�Ltqab �LWqab�: (A8)

Here, 2Da denotes the connection compatible with the
metric qab induced on the sphere S and Wa � qabWb.
Note that Eqs. (35) and (36) follow straightforwardly
from this when one imposes W� to be the qab isometry
��’

�.
The conformal decomposition qab � �4~qab leads to

�ab �
�4

2

	
 �l�~qab �Lt~qab �

1

2
�Lt ln~q�~qab

� 2 ~Da
~Wb �

2 ~Db
~Wa �

2 ~DcWc~qab



; (A9)

and

 �l� �
1

2
Lt ln~q� 4Lt ln��2 ~DaW

a � 4Wa2 ~Da ln�;

(A10)
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where 2 ~Da is the connection compatible with ~qab and
~Wa � ~qabW

b. In particular, with the notation 6� for W�

and choosing t� to be the quasi-Killing vector L� (so that
@t~qab � 0), the vanishing of the expansion in Eq. (A10)
leads to condition (56) [after substituting Eq. (10) for @t�].
On the other hand, from Eq. (A9), the traceless part of
�ab �

4
0 is equivalent to condition (57). It is then clear

from Eq. (A9) that in corotating coordinates the vector 6�

must be a conformal symmetry generator of ~qab.
Finally, a more general expression for ��� can be

obtained if we do not assume a coordinate system sta-
tionary with respect to �. Substituting l� � ��n� � s��
in Eq. (A3) and expanding the derivative we find

��� � ��D�s� � K���q
�
�q

�
�: (A11)

Taking the trace, the standard expression for  �l� follows,

 �l� � ��Dis
i � Kijs

isj � K�: (A12)

Hence, after a conformal decomposition,

 �l� � �4~si ~Di ln�� ~Di~s
i ���2Kij~s

i~sj ��2K����2;

(A13)

where ~si � �2si.
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