191 research outputs found
Staged laser interstitial thermal therapy (LITT) treatments to left Insular low-grade glioma
BACKGROUND AND IMPORTANCE: Low-grade insular gliomas remain challenging tumors for aggressive resection because of the numerous functional and vascular structures surrounding them. Because of the potential morbidities associated with open surgical resection, less invasive techniques may confer a more optimal balance between cytoreduction and surgical complications. For this reason, we evaluated the use of laser interstitial thermal therapy (LITT) for resection of a dominant hemisphere oligodendroglioma World Health Organization (WHO) grade II in a 68-yr-old patient by use of multiple staged surgeries for its resection.
CLINICAL PRESENTATION: Patient KK was a 68-yr-old female who was found to have a large, left-sided insular mass that was shown to be an oligodendroglioma WHO grade II, positive for codeletion 1p/19q and IDH1 mutant on biopsy. Over the course of 3 mo, KK underwent 2 stages of LITT, targeting different areas of the 5-cm tumor. The 60-d magnetic resonance imaging (MRI) demonstrated a reduction in size of the tumor from 5.2 × 3.3 × 2.4 cm to 3.6 × 1.9 × 1.4 cm. She returned for a second stage targeting the anterior portion of the tumor. KK did well postoperatively and went on to postsurgical chemoradiation. At the 2-yr follow-up, the lesion showed near resolution on MRI.
CONCLUSION: This case report demonstrates successful use of LITT for staged surgeries to treat a left hemisphere-dominant insular lesion. This establishes the use of LITT as a viable, minimally invasive option to treat tumors that are difficult to access or pose concerns for increased morbidity through an open surgery
Resting state functional connectivity magnetic resonance imaging integrated with intraoperative neuronavigation for functional mapping after aborted awake craniotomy
BACKGROUND: Awake craniotomy is currently the gold standard for aggressive tumor resections in eloquent cortex. However, a significant subset of patients is unable to tolerate this procedure, particularly the very young or old or those with psychiatric comorbidities, cardiopulmonary comorbidities, or obesity, among other conditions. In these cases, typical alternative procedures include biopsy alone or subtotal resection, both of which are associated with diminished surgical outcomes. CASE DESCRIPTION: Here, we report the successful use of a preoperatively obtained resting state functional connectivity magnetic resonance imaging (MRI) integrated with intraoperative neuronavigation software in order to perform functional cortical mapping in the setting of an aborted awake craniotomy due to loss of airway. CONCLUSION: Resting state functional connectivity MRI integrated with intraoperative neuronavigation software can provide an alternative option for functional cortical mapping in the setting of an aborted awake craniotomy
Unilateral, 3D arm movement kinematics are encoded in ipsilateral human cortex
There is increasing evidence that the hemisphere ipsilateral to a moving limb plays a role in planning and executing movements. However, the exact relationship between cortical activity and ipsilateral limb movements is uncertain. We sought to determine whether 3D arm movement kinematics (speed, velocity, and position) could be decoded from cortical signals recorded from the hemisphere ipsilateral to the moving limb. By having invasively monitored patients perform unilateral reaches with each arm, we also compared the encoding of contralateral and ipsilateral limb kinematics from a single cortical hemisphere. In four motor-intact human patients (three male, one female) implanted with electrocorticography electrodes for localization of their epileptic foci, we decoded 3D movement kinematics of both arms with accuracies above chance. Surprisingly, the spatial and spectral encoding of contralateral and ipsilateral limb kinematics was similar, enabling cross-prediction of kinematics between arms. These results clarify our understanding that the ipsilateral hemisphere robustly contributes to motor execution and supports that the information of complex movements is more bihemispherically represented in humans than has been previously understood
Tailoring of arteriovenous graft‑to‑vein anastomosis angle to attenuate pathological flow fields
Abstract Arteriovenous grafts are routinely placed to facilitate hemodialysis in patients with end stage renal disease. These grafts are conduits between higher pressure arteries and lower pressure veins. The connection on the vein end of the graft, known as the graft-to-vein anastomosis, fails frequently and chronically due to high rates of stenosis and thrombosis. These failures are widely believed to be associated with pathologically high and low flow shear strain rates at the graft-to-vein anastomosis. We hypothesized that consistent with pipe flow dynamics and prior work exploring vein-to-artery anastomosis angles in arteriovenous fistulas, altering the graft-to-vein anastomosis angle can reduce the incidence of pathological shear rate fields. We tested this via computational fluid dynamic simulations of idealized arteriovenous grafts, using the Bird-Carreau constitutive law for blood. We observed that low graft-to-vein anastomosis angles ( > 40 ∘ ) led to increased incidence of pathologically high shear rates. Optimizations predicted that an intermediate ( ∼ 30 ∘ ) graft-to-anastomosis angle was optimal. Our study demonstrates that graft-to-vein anastomosis angles can significantly impact pathological flow fields, and can be optimized to substantially improve arteriovenous graft patency rates
A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients
Localizing neurologic function within the brain remains a significant challenge in clinical neurosurgery. Invasive mapping with direct electrocortical stimulation currently is the clinical gold standard but is impractical in young or cognitively delayed patients who are unable to reliably perform tasks. Resting state functional magnetic resonance imaging non-invasively identifies resting state networks without the need for task performance, hence, is well suited to pediatric patients. We compared sensorimotor network localization by resting state fMRI to cortical stimulation sensory and motor mapping in 16 pediatric patients aged 3.1 to 18.6 years. All had medically refractory epilepsy that required invasive electrographic monitoring and stimulation mapping. The resting state fMRI data were analyzed using a previously trained machine learning classifier that has previously been evaluated in adults. We report comparable functional localization by resting state fMRI compared to stimulation mapping. These results provide strong evidence for the utility of resting state functional imaging in the localization of sensorimotor cortex across a wide range of pediatric patients
Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex
High-gamma-band (\u3e60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca\u27s area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform trends across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics
Functional disruptions of the brain in low back pain: A potential imaging biomarker of functional disability
Chronic low back pain (LBP) is one of the leading causes of disability worldwide. While LBP research has largely focused on the spine, many studies have demonstrated a restructuring of human brain architecture accompanying LBP and other chronic pain states. Brain imaging presents a promising source for discovering noninvasive biomarkers that can improve diagnostic and prognostication outcomes for chronic LBP. This study evaluated graph theory measures derived from brain resting-state functional connectivity (rsFC) as prospective noninvasive biomarkers of LBP. We also proposed and tested a hybrid feature selection method (Enet-subset) that combines Elastic Net and an optimal subset selection method. We collected resting-state functional MRI scans from 24 LBP patients and 27 age-matched healthy controls (HC). We then derived graph-theoretical features and trained a support vector machine (SVM) to classify patient group. The degree centrality (DC), clustering coefficient (CC), and betweenness centrality (BC) were found to be significant predictors of patient group. We achieved an average classification accuracy of 83.1%
Combination laser interstitial thermal therapy plus stereotactic radiotherapy increases time to progression for biopsy-proven recurrent brain metastases
BACKGROUND: Improved survival for patients with brain metastases has been accompanied by a rise in tumor recurrence after stereotactic radiotherapy (SRT). Laser interstitial thermal therapy (LITT) has emerged as an effective treatment for SRT failures as an alternative to open resection or repeat SRT. We aimed to evaluate the efficacy of LITT followed by SRT (LITT+SRT) in recurrent brain metastases.
METHODS: A multicenter, retrospective study was performed of patients who underwent treatment for biopsy-proven brain metastasis recurrence after SRT at an academic medical center. Patients were stratified by planned LITT+SRT versus LITT alone versus repeat SRT alone. Index lesion progression was determined by modified Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria.
RESULTS: Fifty-five patients met inclusion criteria, with a median follow-up of 7.3 months (range: 1.0-30.5), age of 60 years (range: 37-86), Karnofsky Performance Status (KPS) of 80 (range: 60-100), and pre-LITT/biopsy contrast-enhancing volume of 5.7 cc (range: 0.7-19.4). Thirty-eight percent of patients underwent LITT+SRT, 45% LITT alone, and 16% SRT alone. Median time to index lesion progression (29.8, 7.5, and 3.7 months [
CONCLUSIONS: These data suggest that LITT+SRT is superior to LITT or repeat SRT alone for treatment of biopsy-proven brain metastasis recurrence after SRT failure. Prospective trials are warranted to validate the efficacy of using combination LITT+SRT for treatment of recurrent brain metastases
- …