35 research outputs found

    Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance

    Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling

    Get PDF
    Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy1,2,3. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations2. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes1,3. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-ÎșB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1)1,3,4. Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.This work was supported by an Alex's Lemonade Stand Young Investigator Award (S.C.M.), The CIHR Banting Fellowship (S.C.M.), The Cancer Prevention Research Institute of Texas (S.C.M., RR170023), Sibylle Assmus Award for Neurooncology (K.W.P.), the DKFZ-MOST (Ministry of Science, Technology & Space, Israel) program in cancer research (H.W.), James S. McDonnell Foundation (J.N.R.) and NIH grants: CA154130 (J.N.R.), R01 CA169117 (J.N.R.), R01 CA171652 (J.N.R.), R01 NS087913 (J.N.R.) and R01 NS089272 (J.N.R.). R.C.G. is supported by NIH grants T32GM00725 and F30CA217065. M.D.T. is supported by The Garron Family Chair in Childhood Cancer Research, and grants from the Pediatric Brain Tumour Foundation, Grand Challenge Award from CureSearch for Children’s Cancer, the National Institutes of Health (R01CA148699, R01CA159859), The Terry Fox Research Institute and Brainchild. M.D.T. is also supported by a Stand Up To Cancer St. Baldrick’s Pediatric Dream Team Translational Research Grant (SU2C-AACR-DT1113)

    Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer.

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance

    Prototype of a Fish Inspired Swimming Silk Robot

    Get PDF
    Elongate fishes have evolved hundreds of times throughout the tree of life. They occupy many aquatic environments, from streams and ponds to the deepest parts of the ocean. Due to their long body and numerous vertebrae, they are also highly flexible animals, which makes them useful as bioinspiration for designs in the field of soft robotics. We present a biodegradable soft robot prototype, inspired by elongate fishes. The robot\u27s body is primarily composed of a silk hydrogel with embedded fibers to mimic the structure of natural fish skin. When actuated at the front, the flexible gel prototype mimics the undulatory gait of elongate fishes such as eels. Our goal is to use this prototype as a tool to understand the functional consequences of the fibers and other aspects of elongate body morphology in fishes, and to help develop robotic devices for exploring environments previously inaccessible to humans

    Quantitative ChIP-Seq Normalization Reveals Global Modulation of the Epigenome

    Get PDF
    Epigenomic profiling by chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) is a prevailing methodology used to investigate chromatin-based regulation in biological systems such as human disease, but the lack of an empirical methodology to enable normalization among experiments has limited the precision and usefulness of this technique. Here, we describe a method called ChIP with reference exogenous genome (ChIP-Rx) that allows one to perform genome-wide quantitative comparisons of histone modification status across cell populations using defined quantities of a reference epigenome. ChIP-Rx enables the discovery and quantification of dynamic epigenomic profiles across mammalian cells that would otherwise remain hidden using traditional normalization methods. We demonstrate the utility of this method for measuring epigenomic changes following chemical perturbations and show how reference normalization of ChIP-seq experiments enables the discovery of disease-relevant changes in histone modification occupancy

    PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies

    No full text
    The polycomb repressive complex 2 (PRC2) exerts oncogenic effects in many tumour types. However, loss-of-function mutations in PRC2 components occur in a subset of haematopoietic malignancies, suggesting that this complex plays a dichotomous and poorly understood role in cancer. Here we provide genomic, cellular, and mouse modelling data demonstrating that the polycomb group gene SUZ12 functions as tumour suppressor in PNS tumours, high-grade gliomas and melanomas by cooperating with mutations in NF1. NF1 encodes a Ras GTPase-activating protein (RasGAP) and its loss drives cancer by activating Ras. We show that SUZ12 loss potentiates the effects of NF1 mutations by amplifying Ras-driven transcription through effects on chromatin. Importantly, however, SUZ12 inactivation also triggers an epigenetic switch that sensitizes these cancers to bromodomain inhibitors. Collectively, these studies not only reveal an unexpected connection between the PRC2 complex, NF1 and Ras, but also identify a promising epigenetic-based therapeutic strategy that may be exploited for a variety of cancers.status: publishe

    BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism.

    No full text
    The therapeutic potential of pharmacologic inhibition of bromodomain and extraterminal (BET) proteins has recently emerged in hematological malignancies and chronic inflammation. We find that BET inhibitor compounds (JQ1, I-Bet, I-Bet151 and MS417) reactivate HIV from latency. This is evident in polyclonal Jurkat cell populations containing latent infectious HIV, as well as in a primary T-cell model of HIV latency. Importantly, we show that this activation is dependent on the positive transcription elongation factor p-TEFb but independent from the viral Tat protein, arguing against the possibility that removal of the BET protein BRD4, which functions as a cellular competitor for Tat, serves as a primary mechanism for BET inhibitor action. Instead, we find that the related BET protein, BRD2, enforces HIV latency in the absence of Tat, pointing to a new target for BET inhibitor treatment in HIV infection. In shRNA-mediated knockdown experiments, knockdown of BRD2 activates HIV transcription to the same extent as JQ1 treatment, while a lesser effect is observed with BRD4. In single-cell time-lapse fluorescence microscopy, quantitative analyses across ~2,000 viral integration sites confirm the Tat-independent effect of JQ1 and point to positive effects of JQ1 on transcription elongation, while delaying re-initiation of the polymerase complex at the viral promoter. Collectively, our results identify BRD2 as a new Tat-independent suppressor of HIV transcription in latently infected cells and underscore the therapeutic potential of BET inhibitors in the reversal of HIV latency
    corecore