84 research outputs found

    3D fluorescent in situ hybridization using Arabidopsis leaf cryosections and isolated nuclei

    Get PDF
    Background: Fluorescent hybridization techniques are widely used to study the functional organization of different compartments within the mammalian nucleus. However, few examples of such studies are known in the plant kingdom. Indeed, preservation of nuclei 3D structure, which is required for nuclear organization studies, is difficult to fulfill. Results: We report a rapid protocol for fluorescent in situ hybridization (FISH) performed on 3D isolated nuclei and thin cryosectioned leaves of Arabidopsis thaliana. The use of direct labeling minimized treatment steps, shortening the overall procedure. Using image analysis, we measured different parameters related to nucleus morphology and overall 3D structure. Conclusion: Our work describes a 3D-FISH protocol that preserves the 3D structure of Arabidopsis interphase nuclei. Moreover, we report for the first time FISH using cryosections of Arabidopsis leaves. This protocol is a valuable tool to investigate nuclear architecture and chromatin organization

    Compression and fracture of ordered and disordered droplet rafts

    Full text link
    We simulate a two-dimensional array of droplets being compressed between two walls. The droplets are adhesive due to an attractive depletion force. As one wall moves toward the other, the droplet array is compressed and eventually induced to rearrange. The rearrangement occurs via a fracture, where depletion bonds are quickly broken between a subset of droplets. For monodisperse, hexagonally ordered droplet arrays, this fracture is preceded by a maximum force exerted on the walls, which drops rapidly after the fracture occurs. In small droplet arrays a fracture is a single well-defined event, but for larger droplet arrays, competing fractures can be observed. These are fractures nucleated nearly simultaneously in different locations. Finally, we also study the compression of bidisperse droplet arrays. The addition of a second droplet size further disrupts fracture events, showing differences between ideal crystalline arrays, crystalline arrays with a small number of defects, and fully amorphous arrays. These results are in good agreement with previously published experiments.Comment: 14 pages, 14 figure

    Community-supported models of care for people on HIV treatment in sub-Saharan Africa.

    Get PDF
    Further scale-up of antiretroviral therapy (ART) to those in need while supporting the growing patient cohort on ART requires continuous adaptation of healthcare delivery models. We describe several approaches to manage stable patients on ART developed by MĂ©decins Sans FrontiĂšres together with Ministries of Health in four countries in sub-Saharan Africa

    Model-based reconstruction of whole organ growth dynamics reveals invariant patterns in leaf morphogenesis

    Get PDF
    Plant organ morphogenesis spans several orders of magnitude in time and space. Because of limitations in live-imaging, analysing whole organ growth from initiation to mature stages typically rely on static data sampled from different timepoints and individuals. We introduce a new model-based strategy for dating organs and for reconstructing morphogenetic trajectories over unlimited time windows based on static data. Using this approach, we show that Arabidopsis thaliana leaves are initiated at regular 1-day intervals. Despite contrasted adult morphologies, leaves of different ranks exhibited shared growth dynamics, with linear gradations of growth parameters according to leaf rank. At the sub-organ scale, successive serrations from same or different leaves also followed shared growth dynamics, suggesting that global and local leaf growth patterns are decoupled. Analysing mutants leaves with altered morphology highlighted the decorrelation between adult shapes and morphogenetic trajectories, thus stressing the benefits of our approach in identifying determinants and critical timepoints during organ morphogenesis

    Self-organisation and convection of confined magnetotactic bacteria

    Get PDF
    Funder: Natural Sciences and Engineering Research Council of Canada; doi: http://dx.doi.org/10.13039/501100000038Funder: École SupĂ©rieure de Physique et de Chimie Industrielles de la Ville de Paris; doi: http://dx.doi.org/10.13039/501100003068Abstract: Collective motion is found at all scales in biological and artificial systems, and extensive research is devoted to describing the interplay between interactions and external cues in collective dynamics. Magnetotactic bacteria constitute a remarkable example of living organisms for which motion can be easily controlled remotely. Here, we report a new type of collective motion where a uniform distribution of magnetotactic bacteria is rendered unstable by a magnetic field. A new state of “bacterial magneto-convection” results, wherein bacterial plumes emerge spontaneously perpendicular to an interface and develop into self-sustained flow convection cells. While there are similarities to gravity driven bioconvection and the Rayleigh–BĂ©nard instability, these rely on a density mismatch between layers of the fluids. Remarkably, here no external forces are applied on the fluid and the magnetic field only exerts an external torque aligning magnetotactic bacteria with the field. Using a theoretical model based on hydrodynamic singularities, we capture quantitatively the instability and the observed long-time growth. Bacterial magneto-convection represents a new class of collective behaviour resulting only from the balance between hydrodynamic interactions and external alignment

    Involvement of the Efflux Pumps in Chloramphenicol Selected Strains of Burkholderia thailandensis: Proteomic and Mechanistic Evidence

    Get PDF
    Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some ÎČ-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections

    Drying colloidal systems: laboratory models for a wide range of applications

    Get PDF
    The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art
    • 

    corecore