351 research outputs found

    Mobility and Saturation Velocity in Graphene on SiO2

    Full text link
    We examine mobility and saturation velocity in graphene on SiO2 above room temperature (300-500 K) and at high fields (~1 V/um). Data are analyzed with practical models including gated carriers, thermal generation, "puddle" charge, and Joule heating. Both mobility and saturation velocity decrease with rising temperature above 300 K, and with rising carrier density above 2x10^12 cm^-2. Saturation velocity is >3x10^7 cm/s at low carrier density, and remains greater than in Si up to 1.2x10^13 cm^-2. Transport appears primarily limited by the SiO2 substrate, but results suggest intrinsic graphene saturation velocity could be more than twice that observed here

    Elementary bounds on Poincare and log-Sobolev constants for decomposable Markov chains

    Full text link
    We consider finite-state Markov chains that can be naturally decomposed into smaller ``projection'' and ``restriction'' chains. Possibly this decomposition will be inductive, in that the restriction chains will be smaller copies of the initial chain. We provide expressions for Poincare (resp. log-Sobolev) constants of the initial Markov chain in terms of Poincare (resp. log-Sobolev) constants of the projection and restriction chains, together with further a parameter. In the case of the Poincare constant, our bound is always at least as good as existing ones and, depending on the value of the extra parameter, may be much better. There appears to be no previously published decomposition result for the log-Sobolev constant. Our proofs are elementary and self-contained.Comment: Published at http://dx.doi.org/10.1214/105051604000000639 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Thermal Transport Across Graphene Step Junctions

    Get PDF
    Step junctions are often present in layered materials, i.e. where single-layer regions meet multi-layer regions, yet their effect on thermal transport is not understood to date. Here, we measure heat flow across graphene junctions (GJs) from monolayer to bilayer graphene, as well as bilayer to four-layer graphene for the first time, in both heat flow directions. The thermal conductance of the monolayer-bilayer GJ device ranges from ~0.5 to 9.1x10^8 Wm-2K-1 between 50 K to 300 K. Atomistic simulations of such GJ device reveal that graphene layers are relatively decoupled, and the low thermal conductance of the device is determined by the resistance between the two dis-tinct graphene layers. In these conditions the junction plays a negligible effect. To prove that the decoupling between layers controls thermal transport in the junction, the heat flow in both directions was measured, showing no evidence of thermal asymmetry or rectification (within experimental error bars). For large-area graphene applications, this signifies that small bilayer (or multilayer) islands have little or no contribution to overall thermal transport

    Rehospitalization following percutaneous coronary intervention for commercially insured patients with acute coronary syndrome: a retrospective analysis

    Get PDF
    BACKGROUND: While prior research has provided important information about readmission rates following percutaneous coronary intervention, reports regarding charges and length of stay for readmission beyond 30 days post-discharge for patients in a large cohort are limited. The objective of this study was to characterize the rehospitalization of patients with acute coronary syndrome receiving percutaneous coronary intervention in a U.S. health benefit plan. METHODS: This study retrospectively analyzed administrative claims data from a large US managed care plan at index hospitalization, 30-days, and 31-days to 15-months rehospitalization. A valid Diagnosis Related Group code (version 24) associated with a PCI claim (codes 00.66, 36.0X, 929.73, 929.75, 929.78–929.82, 929.84, 929.95/6, and G0290/1) was required to be included in the study. Patients were also required to have an ACS diagnosis on the day of admission or within 30 days prior to the index PCI. ACS diagnoses were classified by the International Statistical Classification of Disease 9 (ICD-9-CM) codes 410.xx or 411.11. Patients with a history of transient ischemic attack or stroke were excluded from the study because of the focus only on ACS-PCI patients. A clopidogrel prescription claim was required within 60 days after hospitalization. RESULTS: Of the 6,687 ACS-PCI patients included in the study, 5,174 (77.4%) were male, 5,587 (83.6%) were <65 years old, 4,821 (72.1%) had hypertension, 5,176 (77.4%) had hyperlipidemia, and 1,777 (26.6%) had diabetes. At index hospitalization drug-eluting stents were the most frequently used: 5,534 (82.8%). Of the 4,384 patients who completed the 15-month follow-up, a total of 1,367 (31.2%) patients were rehospitalized for cardiovascular (CV)-related events, of which 811 (59.3%) were revascularization procedures: 13 (1.0%) for coronary artery bypass graft and 798 (58.4%) for PCI. In general, rehospitalizations associated with revascularization procedures cost more than other CV-related rehospitalizations. Patients rehospitalized for revascularization procedures had the shortest median time from post-index PCI to rehospitalization when compared to the patients who were rehospitalized for other CV-related events. CONCLUSIONS: For ACS patients who underwent PCI, revascularization procedures represented a large portion of rehospitalizations. Revascularization procedures appear to be the most frequent, most costly, and earliest cause for rehospitalization after ACS-PCI

    Programmable Spectral Source and Design Tool for 3D Imaging Using Complementary Bandpass Filters

    Get PDF
    An endoscopic illumination system for illuminating a subject for stereoscopic image capture, includes a light source which outputs light; a first complementary multiband bandpass filter (CMBF) and a second CMBF, the first and second CMBFs being situated in first and second light paths, respectively, where the first CMBF and the second CMBF filter the light incident thereupon to output filtered light; and a camera which captures video images of the subject and generates corresponding video information, the camera receiving light reflected from the subject and passing through a pupil CMBF pair and a detection lens. The pupil CMBF includes a first pupil CMBF and a second pupil CMBF, the first pupil CMBF being identical to the first CMBF and the second pupil CMBF being identical to the second CMBF, and the detection lens includes one unpartitioned section that covers both the first pupil CMBF and the second pupil CMBF

    School Perspectives on Collaborative Inquiry: Lessons Learned From New York City, 2009-2010

    Get PDF
    The New York City Department of Education has supported collaborative inquiry as a potentially powerful process for helping administrators and teachers use student data to improve instruction and raise student achievement. Beginning with a pilot project in 2006, teams of teachers have learned to work together to diagnose the needs of students who have not been successful in their classrooms and to develop strategies to improve their learning. Collaborative inquiry sits at the heart of the Department\u27s larger Children First initiative and aims to help educators close the achievement gap in their schools. Each year New York City schools have engaged higher proportions of faculty in the inquiry work. The goal is at least 90% participation in collaborative inquiry. The purpose of this research report is to share lessons learned about the conditions, structures, relationships, and leadership practice that support teacher participation in inquiry. The report also presents perceived benefits of collaborative inquiry as reported by school leaders and teachers. Data come from site visits to 13 schools actively engaged in collaborative inquiry. The research team conducted 213 interviews with principals, assistant principals, instructional support staffs, and teachers participating in inquiry and 37 observations of inquiry team meetings

    Silicon Heat Pipe Array

    Get PDF
    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better suited for the cooling of semiconductor devices
    • …
    corecore