12 research outputs found

    In silico investigation of molecular interactions of Volatile Anesthetics: Effects on phospholipid membranes and subcellular targets

    Get PDF
    The ability of anesthetics to reversibly suppress consciousness must reside in the effects exerted onto specific molecular tar- gets. Interactions between Volatile Anesthetics and the phospholipid mem- brane as well as intracellular tubulin, were investigated using Computational Molecular Modelling, which showed rapid ligand partitioning inside the membrane and significant effects on the mechanical char- acteristics thereof, while transient binding locations have been found on the tubulin dimer

    Alteration of lipid bilayer mechanics by volatile anesthetics: insights from μs-long molecular dynamics simulations

    Get PDF
    Very few drugs in clinical practice feature the chemical diversity, narrow therapeutic window, unique route of administration, and reversible cognitive effects of volatile anesthetics. The correlation between their hydrophobicity and their potency and the increasing amount of evidence suggesting that anesthetics exert their action on transmembrane proteins, justifies the investigation of their effects on phospholipid bilayers at the molecular level, given the strong functional and structural link between transmembrane proteins and the surrounding lipid matrix. Molecular dynamics simulations of a model lipid bilayer in the presence of ethylene, desflurane, methoxyflurane, and the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (also called F6 or 2N) at different concentrations highlight the structural consequences of VA partitioning in the lipid phase, with a decrease of lipid order and bilayer thickness, an increase in overall lipid lateral mobility and area-per-lipid, and a marked reduction in the mechanical stiffness of the membrane, that strongly correlates with the compounds' hydrophobicity

    Insights into the interaction dynamics between volatile anesthetics and tubulin through computational molecular modelling

    Get PDF
    General anesthetics, able to reversibly suppress all conscious brain activity, have baffled medical science for decades, and little is known about their exact molecular mechanism of action. Given the recent scientific interest in the exploration of microtubules as putative functional targets of anesthetics, and the involvement thereof in neurodegenerative disorders, the present work focuses on the investigation of the interaction between human tubulin and four volatile anesthetics: ethylene, desflurane, halothane and methoxyflurane. Interaction sites on different tubulin isotypes are predicted through docking, along with an estimate of the binding affinity ranking. The analysis is expanded by Molecular Dynamics simulations, where the dimers are allowed to freely interact with anesthetics in the surrounding medium. This allowed for the determination of interaction hotspots on tubulin dimers, which could be linked to different functional consequences on the microtubule architecture, and confirmed the weak, Van der Waals-type interaction, occurring within hydrophobic pockets on the dimer. Both docking and MD simulations highlighted significantly weaker interactions of ethylene, consistent with its far lower potency as a general anesthetic. Overall, simulations suggest a transient interaction between anesthetics and microtubules in general anesthesia, and contact probability analysis shows interaction strengths consistent with the potencies of the four compounds

    PAMAM and PPI dendrimers as potential anti-cancer drug carriers: a computational investigation

    Get PDF
    Photodynamic therapy (PDT) is a promising technique for several types of anti-cancer therapy, exploiting a photosensitizer, a light source and oxygen. The present work computationally investigates the properties of poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers of generation 3 and 4 as potential nanoscale drug delivery systems for Rose Bengal (RB), a candidate photosensitizer for PDT

    Electronic energy migration in Microtubules

    Get PDF
    The repeating arrangement of tubulin dimers confers great mechanical strength to microtubules, which are used as scaffolds for intracellular macromolecular transport in cells and exploited in biohybrid devices. The crystalline order in a microtubule, with lattice constants short enough to allow energy transfer between amino acid chromophores, is similar to synthetic structures designed for light harvesting. After photoexcitation, can these amino acid chromophores transfer excitation energy along the microtubule like a natural or artificial light-harvesting system? Here, we use tryptophan autofluorescence lifetimes to probe energy hopping between aromatic residues in tubulin and microtubules. By studying how the quencher concentration alters tryptophan autofluorescence lifetimes, we demonstrate that electronic energy can diffuse over 6.6 nm in microtubules. We discover that while diffusion lengths are influenced by tubulin polymerization state (free tubulin versus tubulin in the microtubule lattice), they are not significantly altered by the average number of protofilaments (13 versus 14). We also demonstrate that the presence of the anesthetics etomidate and isoflurane reduce exciton diffusion. Energy transport as explained by conventional Förster theory (accommodating for interactions between tryptophan and tyrosine residues) does not sufficiently explain our observations. Our studies indicate that microtubules are, unexpectedly, effective light harvesters

    Reconstitution of microtubule into GTP-responsive nanocapsules

    Get PDF
    Nanocapsules that collapse in response to guanosine triphosphate (GTP) have the potential as drug carriers for efficiently curing diseases caused by cancer and RNA viruses because GTP is present at high levels in such diseased cells and tissues. However, known GTP-responsive carriers also respond to adenosine triphosphate (ATP), which is abundant in normal cells as well. Here, we report the elaborate reconstitution of microtubule into a nanocapsule that selectively responds to GTP. When the tubulin monomer from microtubule is incubated at 37 degrees C with a mixture of GTP (17 mol%) and nonhydrolysable GTP* (83 mol%), a tubulin nanosheet forms. Upon addition of photoreactive molecular glue to the resulting dispersion, the nanosheet is transformed into a nanocapsule. Cell death results when a doxorubicin-containing nanocapsule, after photochemically crosslinked for properly stabilizing its shell, is taken up into cancer cells that overexpress GTP.GTP-triggered release from drug carriers has huge potential in cancer therapy but current carriers suffers from off target release due to ATP also acting as a trigger. Here, the authors report on the development of a microtubule capsule which is engineered to be responsive to only GTP not ATP and demonstrate targeted drug delivery

    Research data on "Reconstitution of microtubule into GTP-responsive nanocapsules"

    No full text
    This repository contains the set of data shown in the paper "Reconstitution of microtubule into GTP-responsive nanocapsules", published on Nature Communications (DOI: 10.1038/s41467-022-33156-5). All the input data needed to run the simulations and get the results are organized in 3 different folders: * `00-MDPFiles/` in this folder there are the mdp files for each step for Gromacs-MD simulations: energy minimization, nvt, npt, production with restraints and production without restraints. * `01-TubulinSystems/` the folder contains all the necessary files for the tubulin assembly MD simulations with and without glue (`SystemA_Glue/`, `SystemA_noGlue/`, `SystemB_Glue/`, `SystemB_noGlue/`). * `02-OnlyGlue/` the folder contains all the files needed for the the atomistic MD simulations of the glue in water

    Noncovalent Interactions with PAMAM and PPI Dendrimers Promote the Cellular Uptake and Photodynamic Activity of Rose Bengal: The Role of the Dendrimer Structure

    Get PDF
    Rose bengal is an anionic dye considered as a potential photosensitizer for anticancer photodynamic therapy. The clinical utility of rose bengal is hampered by its short half-life, limited transmembrane transport, aggregation, and self-quenching; consequently, efficient drug carriers that overcome these obstacles are urgently required. In this study, we performed multilevel in vitro and in silico characterization of interactions between rose bengal and cationic poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) dendrimers of the third and fourth generation and assessed the ability of the resultant complexes to modulate the photosensitizing properties of the drug. We focused on explaining the molecular basis of this phenomenon and proved that the generation- and structure-dependent binding of the dye by the dendrimers increases the cellular uptake and production of singlet oxygen and intracellular reactive oxygen species, leading to an increase in phototoxicity. We conclude that the application of dendrimer carriers could enable the design of efficient photodynamic therapies based on rose bengal
    corecore