9 research outputs found

    Light stress-induced chloroplast movement and midday depression of photosynthesis in sorghum leaves

    Get PDF
    Plants are exposed to high light intensity, high leaf temperatures and high air-to-leaf water vapor pressure deficit (ALVPD) during the day. These environmental stresses cause stomatal closure and photoinhibitory damage, leading to midday depression of photosynthesis. Chloroplast positioning is essential for the efficient operation of photosynthesis. However, chloroplast behavior before, during, and even after the midday depression of photosynthesis remains unknown. We investigated changes in the intracellular positioning of chloroplasts and photosynthetic traits under a diurnal pattern of light. Sorghum leaves were exposed to a 12-h regime of light mimicking the natural light environment, with constant leaf temperature and ALVPD. Net photosynthetic rate (Pn) showed a diurnal pattern, and midday depression in Pn was observed at 3.8 h of irradiation. Depression in Pn was attributed to stomatal limitation because the decrease in Pn was in accordance with the decrease in stomatal conductance. The maximum efficiency of photosystem II decreased with the increase in light intensity and remained low after 12 h of irradiation. Bundle sheath chloroplasts swelled after 8 h of irradiation, representing the accumulation of starch. Conversely, mesophyll chloroplasts exhibited avoidance response after 4 h of irradiation, and the avoidance position was maintained during the remainder of the daytime. These data suggest that chloroplasts are subject to light stress during and after the midday depression of photosynthesis. The intensity of natural light is excessive for most of the day and this light stress induces chloroplast avoidance response and depression of photosynthesis

    Diurnal changes in chloroplast positioning and photosynthetic traits of C₄ grass finger millet

    Get PDF
    Mesophyll (M) chloroplasts in finger millet are known to aggregate to the bundle sheath side when leaves are constantly irradiated with extremely high-intensity light. This aggregative movement of M chloroplasts is also observed in natural environment, but whether a natural light regime is effective in inducing the response remains unclear. Abscisic acid is reported to trigger not only the aggregative movement but also stomatal closure, but photosynthetic responses accompanying the aggregative movement also remain unknown.We investigated changes in chloroplast positioning and photosynthetic traits under diurnal patterns of light, mimicking the natural light environment. M chloroplasts showed the aggregative movement with increasing light intensity whether it frequently fluctuated or not, and kept their aggregative positions in the midday. With decreasing light intensity, M chloroplasts returned to the random position in the evening. These results suggest that M chloroplasts often rearrange their intracellular positions during the daytime and that the chloroplast aggregative movement can be induced by a natural regime of light. The chloroplast aggregative movement was observed with increasing stomatal conductance, suggesting that stomatal closure is not crucial to trigger the chloroplast response

    Combined citicoline and docosahexaenoic acid treatment improves cognitive dysfunction following transient brain ischemia.

    Get PDF
    Phospholipids are structural components of cellular membranes that play important roles as precursors for various signaling pathways in modulating neuronal membrane function and maintenance of the intracellular environment. Phosphatidylcholine (PtdCho) is the most abundant cellular phospholipid. Citicoline and docosahexaenoic acid (DHA) are essential intermediates in the synthesis of PtdCho. Both PtdCho intermediates have independently shown neuroprotective effects in cerebral ischemia, but their combined effect is unknown. This study aimed to investigate the combined effect of oral citicoline and DHA treatment on improvement of cognitive deficits following cerebral ischemia using a 20-min bilateral common carotid artery occlusion (BCCAO) mouse model. BCCAO ischemic mice were treated for a total of 11 days with a combination of citicoline (40 mg/kg body weight/day) and DHA (300 mg/kg body weight/day) or each alone. Combined citicoline and DHA synergistically and significantly improved learning and memory ability of ischemic mice compared with either alone. Further, citicoline and DHA treatment significantly prevented neuronal cell death, and slightly increased DHA-containing PtdCho in the hippocampus, albeit not significantly. Taken together, these findings suggest that combined citicoline and DHA treatment may have synergistic benefits for partially improving memory deficits following transient brain ischemia. Keywords: Citicoline, DHA, Bilateral common carotid artery occlusion, Neuroprotection, Memor
    corecore