109 research outputs found

    Metallicity at the explosion sites of interacting transients

    Get PDF
    Context. Some circumstellar-interacting (CSI) supernovae (SNe) are produced by the explosions of massive stars that have lost mass shortly before the SN explosion. There is evidence that the precursors of some SNe IIn were luminous blue variable (LBV) stars. For a small number of CSI SNe, outbursts have been observed before the SN explosion. Eruptive events of massive stars are named as SN impostors (SN IMs) and whether they herald a forthcoming SN or not is still unclear. The large variety of observational properties of CSI SNe suggests the existence of other progenitors, such as red supergiant (RSG) stars with superwinds. Furthermore, the role of metallicity in the mass loss of CSI SN progenitors is still largely unexplored. Aims. Our goal is to gain insight on the nature of the progenitor stars of CSI SNe by studying their environments, in particular the metallicity at their locations. Methods. We obtain metallicity measurements at the location of 60 transients (including SNe IIn, SNe Ibn, and SN IMs), via emission-line diagnostic on optical spectra obtained at the Nordic Optical Telescope and through public archives. Metallicity values from the literature complement our sample. We compare the metallicity distributions among the different CSI SN subtypes and to those of other core-collapse SN types. We also search for possible correlations between metallicity and CSI SN observational properties. Results. We find that SN IMs tend to occur in environments with lower metallicity than those of SNe IIn. Among SNe IIn, SN IIn-L(1998S-like) SNe show higher metallicities, similar to those of SNe IIL/P, whereas long-lasting SNe IIn (1988Z-like) show lower metallicities, similar to those of SN IMs. The metallicity distribution of SNe IIn can be reproduced by combining the metallicity distributions of SN IMs (that may be produced by major outbursts of massive stars like LBVs) and SNe IIP (produced by RSGs). The same applies to the distributions of the Normalized Cumulative Rank (NCR) values, which quantifies the SN association to H II regions. For SNe IIn, we find larger mass-loss rates and higher CSM velocities at higher metallicities. The luminosity increment in the optical bands during SN IM outbursts tend to be larger at higher metallicity, whereas the SN IM quiescent optical luminosities tend to be lower. Conclusions. The difference in metallicity between SNe IIn and SN IMs suggests that LBVs are only one of the progenitor channels for SNe IIn, with 1988Z-like and 1998S-like SNe possibly arising from LBVs and RSGs, respectively. Finally, even though linedriven winds likely do not primarily drive the late mass-loss of CSI SN progenitors, metallicity has some impact on the observational properties of these transients. Key words. supernovae: general - stars: evolution - galaxies: abundancesComment: Submitted to Astronomy and Astrophysics on 28/02/2015; submitted to arXiv after the 1st referee repor

    The Unusually Luminous Extragalactic Nova SN 2010U

    Get PDF
    We present observations of the unusual optical transient SN 2010U, including spectra taken 1.03 days to 15.3 days after maximum light that identify it as a fast and luminous Fe II type nova. Our multi-band light curve traces the fast decline (t_2 = 3.5 days) from maximum light (M_V = -10.2 mag), placing SN 2010U in the top 0.5% of the most luminous novae ever observed. We find typical ejecta velocities of approximately 1100 km/s and that SN 2010U shares many spectral and photometric characteristics with two other fast and luminous Fe II type novae, including Nova LMC 1991 and M31N-2007-11d. For the extreme luminosity of this nova, the maximum magnitude vs. rate of decline relationship indicates a massive white dwarf progenitor with a low pre-outburst accretion rate. However, this prediction is in conflict with emerging theories of nova populations, which predict that luminous novae from massive white dwarfs should preferentially exhibit an alternate spectral type (He/N) near maximum light.Comment: 16 pages, 16 figures. Submitted to the Astrophysical Journa

    The Type IIn Supernova SN 2010bt: The Explosion of a Star in Outburst

    Get PDF
    Indexación: Scopus.It is well known that massive stars (M > 8 M ) evolve up to the collapse of the stellar core, resulting in most cases in a supernova (SN) explosion. Their heterogeneity is related mainly to different configurations of the progenitor star at the moment of the explosion and to their immediate environments. We present photometry and spectroscopy of SN 2010bt, which was classified as a Type IIn SN from a spectrum obtained soon after discovery and was observed extensively for about 2 months. After the seasonal interruption owing to its proximity to the Sun, the SN was below the detection threshold, indicative of a rapid luminosity decline. We can identify the likely progenitor with a very luminous star (log L/L ≈ 7) through comparison of Hubble Space Telescope images of the host galaxy prior to explosion with those of the SN obtained after maximum light. Such a luminosity is not expected for a quiescent star, but rather for a massive star in an active phase. This progenitor candidate was later confirmed via images taken in 2015 (∼5 yr post-discovery), in which no bright point source was detected at the SN position. Given these results and the SN behavior, we conclude that SN 2010bt was likely a Type IIn SN and that its progenitor was a massive star that experienced an outburst shortly before the final explosion, leading to a dense H-rich circumstellar environment around the SN progenitor. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aac51

    iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor

    Get PDF
    Context. Type Ic supernovae (SNe Ic) arise from the core-collapse of H- (and He-) poor stars, which could either be single Wolf-Rayet (WR) stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak (~10−15 d), without any early (in the first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). Aims. We have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess in the optical light curves followed by a long (~30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic to be observed. Our aim is to determine the properties of this explosion and of its progenitor star. Methods. Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modeled with hydrodynamical and analytical models, with particular focus on the early emission. Results. iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modeling of the bolometric properties reveals a large ejecta mass (~10 M_⊙) and strong ^(56)Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended (≳500 R_⊙), low-mass (≳0.045 M_⊙) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. Conclusions. The large ejecta mass and the presence of H- and He-free extended material around the star suggest that the progenitor of iPTF15dtg was a massive (≳35 M_⊙) WR star that experienced strong mass loss

    Massive stars exploding in a He-rich circumstellar medium. IV. Transitional Type Ibn Supernovae

    Get PDF
    We present ultraviolet, optical and near-infrared data of the Type Ibn supernovae (SNe) 2010al and 2011hw. SN 2010al reaches an absolute magnitude at peak of M(R) = -18.86 +- 0.21. Its early light curve shows similarities with normal SNe Ib, with a rise to maximum slower than most SNe Ibn. The spectra are dominated by a blue continuum at early stages, with narrow P-Cygni He I lines indicating the presence of a slow-moving, He-rich circumstellar medium. At later epochs the spectra well match those of the prototypical SN Ibn 2006jc, although the broader lines suggest that a significant amount of He was still present in the stellar envelope at the time of the explosion. SN 2011hw is somewhat different. It was discovered after the first maximum, but the light curve shows a double-peak. The absolute magnitude at discovery is similar to that of the second peak (M(R) = -18.59 +- 0.25), and slightly fainter than the average of SNe Ibn. Though the spectra of SN 2011hw are similar to those of SN 2006jc, coronal lines and narrow Balmer lines are cleary detected. This indicates substantial interaction of the SN ejecta with He-rich, but not H-free, circumstellar material. The spectra of SN 2011hw suggest that it is a transitional SN Ibn/IIn event similar to SN 2005la. While for SN 2010al the spectro-photometric evolution favours a H-deprived Wolf-Rayet progenitor (of WN-type), we agree with the conclusion of Smith et al. (2012) that the precursor of SN 2011hw was likely in transition from a luminous blue variable to an early Wolf-Rayet (Ofpe/WN9) stage.Comment: 23 pages, 11 figures, 6 tables. Accepted by MNRA

    Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project

    Get PDF
    Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (~ 84 d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades. Aims. We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters. We also study the metallicity of their environments. Methods. Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected ^(56)Ni mass, the explosion energy, and the ejecta mass. Results. We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected ^(56)Ni mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R_⊙ (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100 R_⊙ (PTF09gpn) and 300 R_⊙ (SN 2004em). Conclusions. We confirm that long-rising SNe II with light-curve shapes closely resembling that of SN 1987A generally arise from blue supergiant (BSG) stars. However, some of them, such as SN 2004em, likely have progenitors with larger radii (~ 300 R_⊙, typical of yellow supergiants) and can thus be regarded as intermediate cases between normal SNe IIP and SN 1987A-like SNe. Some extended red supergiant (RSG) stars such as the progenitor of SN 2004ek can also produce long-rising SNe II if they synthesized a large amount of ^(56 0Ni in the explosion. Low host metallicity is confirmed as a characteristic of the SNe arising from compact BSG stars

    SN 2009N: linking normal and subluminous Type II-P Sne

    Get PDF
    We present ultraviolet, optical, near-infrared photometry and spectroscopy of SN 2009N in NGC 4487. This object is a type II-P supernova with spectra resembling those of subluminous II-P supernovae, while its bolometric luminosity is similar to that of the intermediate luminosity SN 2008in. We created SYNOW models of the plateau phase spectra for line identification and to measure the expansion velocity. In the near-infrared spectra we find signs indicating possible weak interaction between the supernova ejecta and the pre-existing circumstellar material. These signs are also present in the previously unpublished near-infrared spectra of SN 2008in. The distance to SN 2009N is determined via the expanding photosphere method and the standard candle method as D=21.6±1.1 MpcD= 21.6 \pm 1.1\,{\mathrm {Mpc}}. The produced nickel-mass is estimated to be ∼0.020±0.004 M⊙\sim 0.020 \pm 0.004\,{\mathrm M_\odot}. We infer the physical properties of the progenitor at the explosion through hydrodynamical modelling of the observables. We find the values of the total energy as ∼0.48×1051 erg\sim 0.48 \times 10^{51}\, {\mathrm {erg}}, the ejected mass as ∼11.5 M⊙\sim 11.5\,{\mathrm M_\odot}, and the initial radius as ∼287 R⊙\sim 287\,{\mathrm R_\odot}.Comment: 23 pages, 18 figures, accepted for publication by MNRA
    • …
    corecore