12 research outputs found

    Determining the role of skewed X-chromosome inactivation in developing muscle symptoms in carriers of Duchenne muscular dystrophy.

    No full text
    Duchenne and Becker dystrophinopathies (DMD and BMD) are X-linked recessive disorders caused by mutations in the dystrophin gene that lead to absent or reduced expression of dystrophin in both skeletal and heart muscles. DMD/BMD female carriers are usually asymptomatic, although about 8 % may exhibit muscle or cardiac symptoms. Several mechanisms leading to a reduced dystrophin have been hypothesized to explain the clinical manifestations and, in particular, the role of the skewed XCI is questioned. In this review, the mechanism of XCI and its involvement in the phenotype of BMD/DMD carriers with both a normal karyotype or with X;autosome translocations with breakpoints at Xp21 (locus of the DMD gene) will be analyzed. We have previously observed that DMD carriers with moderate/severe muscle involvement, exhibit a moderate or extremely skewed XCI, in particular if presenting with an early onset of symptoms, while DMD carriers with mild muscle involvement present a random XCI. Moreover, we found that among 87.1 % of the carriers with X;autosome translocations involving the locus Xp21 who developed signs and symptoms of dystrophinopathy such as proximal muscle weakness, difficulty to run, jump and climb stairs, 95.2 % had a skewed XCI pattern in lymphocytes. These data support the hypothesis that skewed XCI is involved in the onset of phenotype in DMD carriers, the X chromosome carrying the normal DMD gene being preferentially inactivated and leading to a moderate-severe muscle involvement

    Rottura del legamento crociato craniale in una vacca

    No full text

    Skewed X-chromosome inactivation plays a crucial role in the onset of symptoms in carriers of Becker muscular dystrophy.

    No full text
    Abstract BACKGROUND: Becker muscular dystrophy (BMD) is an X-linked recessive disorder affecting approximately 1: 18.000 male births. Female carriers are usually asymptomatic, although 2.5-18% may present muscle or heart symptoms. In the present study, the role of the X chromosome inactivation (XCI) on the onset of symptoms in BMD carriers was analysed and compared with the pattern observed in Duchenne muscular dystrophy (DMD) carriers. METHODS: XCI was determined on the lymphocytes of 36 BMD carriers (both symptomatic and not symptomatic) from 11 families requiring genetic advice at the Cardiomyology and Medical Genetics of the Second University of Naples, using the AR methylation-based assay. Carriers were subdivided into two groups, according to age above or below 50 years. Seven females from the same families known as noncarriers were used as controls. A Student's t-test for nonpaired data was performed to evaluate the differences observed in the XCI values between asymptomatic and symptomatic carriers, and carriers aged above or below 50 years. A Pearson correlation test was used to evaluate the inheritance of the XCI pattern in 19 mother-daughter pairs. RESULTS: The results showed that symptomatic BMD carriers had a skewed XCI with a preferential inactivation of the X chromosome carrying the normal allele, whereas the asymptomatic carriers and controls showed a random XCI. No concordance concerning the XCI pattern was observed between mothers and related daughters. CONCLUSIONS: The data obtained in the present study suggest that the onset of symptoms in BMD carriers is related to a skewed XCI, as observed in DMD carriers. Furthermore, they showed no concordance in the XCI pattern inheritanc

    CLCN1 Molecular Characterization in 19 South-Italian Patients With Dominant and Recessive Type of Myotonia Congenita

    No full text
    Myotonia congenita is a genetic disease characterized by impaired muscle relaxation after forceful contraction (myotonia). It is caused by mutations in the CLCN1 gene, encoding the voltage-gated chloride channel of skeletal muscle, ClC-1. According to the pattern of inheritance, two distinct clinical forms have been described, Thomsen disease, inherited as an autosomal dominant trait and Becker disease inherited as an autosomal recessive trait. We report genetic and clinical data concerning 19 patients−13 familial and six isolated cases—all but one originating from the Campania Region, in southern Italy. Twelve patients (63.2%) present Becker type myotonia and 7 (36.8%) Thomsen type. Sex ratio M:F in Becker type is 6:6, while in Thomsen myotonia 4:3. The age of onset of the disease ranged from 2 to 15 years in Becker patients, and from 4 to 20 years in Thomsen. Overall 18 mutations were identified, 10 located in the coding part of the gene (exons 1, 3, 4, 5, 7, 8, 13, 15, 21, 22), and four in the intron part (introns 1, 2, 10, 18). All the exon mutations but two were missense mutations. Some of them, such as c.2551 G > A, c.817G > A and c.86A > C recurred more frequently. About 70% of mutations was inherited with an autosomal recessive pattern, two (c.86A and c.817G>A) with both mechanisms. Three novel mutations were identified, never described in the literature: p.Gly276Ser, p.Phe486Ser, and p.Gln812*, associated with Becker phenotype. Furthermore, we identified three CLCN1 mutations—c.86A>C + c.2551G > A, c.313C > T + c.501C > G and 899G > A + c.2284+5C > T, two of them inherited in cis on the same allele, in three unrelated families. The concomitant occurrence of both clinical pictures—Thomsen and Becker—was observed in one family. Intra-familial phenotypic variability was observed in two families, one with Becker phenotype, and one with Thomsen disease. In the latter an incomplete penetrance was hypothesized

    X-Linked Emery-Dreifuss Muscular Dystrophy: Study Of X-Chromosome Inactivation and Its Relation with Clinical Phenotypes in Female Carriers.

    No full text
    X-linked Emery-Dreifuss muscular dystrophy (EDMD1) affects approximately 1:100,000 male births. Female carriers are usually asymptomatic but, in some cases, they may present clinical symptoms after age 50 at cardiac level, especially in the form of conduction tissue anomalies. The aim of this study was to evaluate the relation between heart involvement in symptomatic EDMD1 carriers and the X-chromosome inactivation (XCI) pattern. The XCI pattern was determined on the lymphocytes of 30 symptomatic and asymptomatic EDMD1 female carriers-25 familial and 5 sporadic cases-seeking genetic advice using the androgen receptor (AR) methylation-based assay. Carriers were subdivided according to whether they were above or below 50 years of age. A variance analysis was performed to compare the XCI pattern between symptomatic and asymptomatic carriers. The results show that 20% of EDMD1 carriers had cardiac symptoms, and that 50% of these were ≥50 years of age. The XCI pattern was similar in both symptomatic and asymptomatic carriers. Conclusions: Arrhythmias in EDMD1 carriers poorly correlate on lymphocytes to a skewed XCI, probably due to (a) the different embryological origin of cardiac conduction tissue compared to lymphocytes or (b) the preferential loss of atrial cells replaced by fibrous tissue

    Cardiac diseases as a predictor warning of hereditary muscle diseases. The case of laminopathies.

    No full text
    Mutations in the LMNA gene are associated with a wide spectrum of disease phenotypes, ranging from neuromuscular, cardiac and metabolic disorders to premature aging syndromes. Skeletal muscle involvement may present with different phenotypes: limb-girdle muscular dystrophy type 1B or LMNA-related dystrophy; autosomal dominant Emery-Dreifuss muscular dystrophy; and a congenital form of muscular dystrophy, frequently associated with early onset of arrhythmias. Heart involvement may occur as part of the muscle involvement or independently, regardless of the presence of the myopathy. Notably conduction defects and dilated cardiomyopathy may exist without a muscle disease. This paper will focus on cardiac diseases presenting as the first manifestation of skeletal muscle hereditary disorders such as laminopathies, inspired by two large families with cardiovascular problems long followed by conventional cardiologists who did not suspect a genetic muscle disorder underlying these events. Furthermore it underlines the need for a multidisciplinary approach in these disorders and how the figure of the cardio-myo-geneticist may play a key role in facilitating the diagnostic process, and addressing the adoption of appropriate prevention measures

    The Genetic Landscape of Dystrophin Mutations in Italy: A Nationwide Study

    No full text
    Dystrophinopathies are inherited diseases caused by mutations in the dystrophin (DMD) gene for which testing is mandatory for genetic diagnosis, reproductive choices and eligibility for personalized trials. We genotyped the DMD gene in our Italian cohort of 1902 patients (BMD n = 740, 39%; DMD n =1162, 61%) within a nationwide study involving 11 diagnostic centers in a 10-year window (2008–2017). In DMD patients, we found deletions in 57%, duplications in 11% and small mutations in 32%. In BMD, we found deletions in 78%, duplications in 9% and small mutations in 13%. In BMD, there are a higher number of deletions, and small mutations are more frequent than duplications. Among small mutations that are generally frequent in both phenotypes, 44% of DMD and 36% of BMD are nonsense, thus, eligible for stop codon read-through therapy; 63% of all out-of-frame deletions are eligible for single exon skipping. Patients were also assigned to Italian regions and showed interesting regional differences in mutation distribution. The full genetic characterization in this large, nationwide cohort has allowed us to draw several correlations between DMD/BMD genotype landscapes and mutation frequency, mutation types, mutation locations along the gene, exon/intron architecture, and relevant protein domain, with effects on population genetic characteristics and new personalized therapies
    corecore