751 research outputs found

    Recombining Plasma & Gamma-ray Emission in the Mixed-morphology Supernova Remnant 3C 400.2

    Full text link
    3C 400.2 belongs to the mixed morphology supernova remnant class, showing center-filled X-ray and shell-like radio morphology. We present a study of 3C 400.2 with archival Suzaku and Fermi-LAT observations. We find recombining plasma (RP) in the Suzaku spectra of north-east and south-east regions. The spectra of these regions are well described by two-component thermal plasma models: The hard component is in RP, while the soft component is in collisional ionization equilibrium (CIE) conditions. The RP has enhanced abundances indicating that the X-ray emission has an ejecta origin, while the CIE has solar abundances associated with the interstellar material. The X-ray spectra of north-west and south-west regions are best fitted by a two-component thermal plasma model: an ionizing and a CIE plasma. We have detected GeV gamma-ray emission from 3C 400.2 at the level of \sim5σ\sigma assuming a point-like source model with a power-law (PL) type spectrum. We have also detected a new GeV source at the level of \sim13σ\sigma assuming a Gaussian extension model with a PL type spectrum in the neighborhood of the SNR. We report the analysis results of 3C 400.2 and the new extended gamma-ray source and discuss the nature of gamma-ray emission of 3C 400.2 in the context of existing NANTEN CO data, DRAO HI data, and the Suzaku X-ray analysis results.Comment: Accepted to be published in the Astrophysical Journa

    Origin of gamma-ray emission in the shell of Cassiopeia A

    Get PDF
    Non-thermal X-ray emission from the shell of Cassiopeia A (Cas A) has been an interesting subject of study, as it provides information about relativistic electrons and their acceleration mechanisms in the shocks. Chandra X-ray observatory revealed the detailed spectral and spatial structure of this SNR in X-rays. The spectral analysis of Chandra X-ray data of Cas A shows unequal flux levels for different regions of the shell, which can be attributed to different magnetic fields in those regions. Additionally, the GeV gamma-ray emission observed by Large Area Telescope on board Fermi Gamma Ray Space Telescope showed that the hadronic processes are dominating in Cas A, a clear signature of acceleration of protons. In this paper we aim to explain the GeV-TeV gamma-ray data in the context of both leptonic and hadronic scenario. We modeled the multi-wavelength spectrum of Cas A. We use synchrotron emission process to explain the observed non-thermal X-ray fluxes from different regions of the shell. These result in estimation of the model parameters, which are then used to explain TeV gamma-ray emission spectrum. We also use hadronic scenario to explain both GeV and TeV fluxes simultaneously. We show that a leptonic model alone cannot explain the GeV-TeV data. Therefore, we need to invoke a hadronic model to explain the observed GeV-TeV fluxes. We found that although pure hadronic model is able to explain the GeV-TeV data, a lepto-hadronic model provides the best fit to the data.Comment: Accepted in A&

    Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle

    Get PDF
    Optical nanoantennas are a novel tool to investigate previously unattainable dimensions in the nanocosmos. Just like their radio-frequency equivalents, nanoantennas enhance the light-matter interaction in their feed gap. Antenna enhancement of small signals promises to open a new regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially the nonlinear spectroscopy of single nanoobjects is very demanding. Here, we present for the first time antenna-enhanced ultrafast nonlinear optical spectroscopy. In particular, we utilize the antenna to determine the nonlinear transient absorption signal of a single gold nanoparticle caused by mechanical breathing oscillations. We increase the signal amplitude by an order of magnitude which is in good agreement with our analytical and numerical models. Our method will find applications in linear and nonlinear spectroscopy of nanoobjects, ranging from single protein binding events via nonlinear tensor elements to the limits of continuum mechanics

    Ultrafast time-resolved spectroscopy of 1D metal-dielectric photonic crystals

    Full text link
    We study the all-optical switching behavior of one-dimensional metal-dielectric photonic crystals due to the nonlinearity of the free metal electrons. A polychromatic pump-probe setup is used to determine the wavelength and pump intensity dependence of the ultrafast transmission suppression as well as the dynamics of the process on a subpicosecond timescale. We find ultrafast (sub-picosecond) as well as a slow (millisecond) behavior. We present a model of the ultrafast dynamics and nonlinear response which can fit the measured data well and allows us to separate the thermal and the electronic response of the system.Comment: 7 pages, 5 figure

    Macroscopic invisibility cloaking of visible light

    Get PDF
    Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices

    Higher Derivative Extension of 6D Chiral Gauged Supergravity

    Get PDF
    Six-dimensional (1,0) supersymmetric gauged Einstein-Maxwell supergravity is extended by the inclusion of a supersymmetric Riemann tensor squared invariant. Both the original model as well as the Riemann tensor squared invariant are formulated off-shell and consequently the total action is off-shell invariant without modification of the supersymmetry transformation rules. In this formulation, superconformal techniques, in which the dilaton Weyl multiplet plays a crucial role, are used. It is found that the gauging of the U(1) R-symmetry in the presence of the higher-order derivative terms does not modify the positive exponential in the dilaton potential. Moreover, the supersymmetric Minkowski(4) x S^2 compactification of the original model, without the higher-order derivatives, is remarkably left intact. It is shown that the model also admits non-supersymmetric vacuum solutions that are direct product spaces involving de Sitter spacetimes and negative curvature internal spaces.Comment: 32 pages; typos corrected, footnote in conclusions section adde

    An invisibility cloak using silver nanowires

    Full text link
    In this paper, we use the parameter retrieval method together with an analytical effective medium approach to design a well-performed invisible cloak, which is based on an empirical revised version of the reduced cloak. The designed cloak can be implemented by silver nanowires with elliptical cross-sections embedded in a polymethyl methacrylate host. This cloak is numerically proved to be robust for both the inner hidden object as well as incoming detecting waves, and is much simpler thus easier to manufacture when compared with the earlier proposed one [Nat. Photon. 1, 224 (2007)].Comment: 7 pages, 4 figures, 2 table
    corecore