Non-thermal X-ray emission from the shell of Cassiopeia A (Cas A) has been an
interesting subject of study, as it provides information about relativistic
electrons and their acceleration mechanisms in the shocks. Chandra X-ray
observatory revealed the detailed spectral and spatial structure of this SNR in
X-rays. The spectral analysis of Chandra X-ray data of Cas A shows unequal flux
levels for different regions of the shell, which can be attributed to different
magnetic fields in those regions. Additionally, the GeV gamma-ray emission
observed by Large Area Telescope on board Fermi Gamma Ray Space Telescope
showed that the hadronic processes are dominating in Cas A, a clear signature
of acceleration of protons. In this paper we aim to explain the GeV-TeV
gamma-ray data in the context of both leptonic and hadronic scenario. We
modeled the multi-wavelength spectrum of Cas A. We use synchrotron emission
process to explain the observed non-thermal X-ray fluxes from different regions
of the shell. These result in estimation of the model parameters, which are
then used to explain TeV gamma-ray emission spectrum. We also use hadronic
scenario to explain both GeV and TeV fluxes simultaneously. We show that a
leptonic model alone cannot explain the GeV-TeV data. Therefore, we need to
invoke a hadronic model to explain the observed GeV-TeV fluxes. We found that
although pure hadronic model is able to explain the GeV-TeV data, a
lepto-hadronic model provides the best fit to the data.Comment: Accepted in A&