951 research outputs found

    AB effect and Aharonov-Susskind charge non-superselection

    Full text link
    We consider a particle in a coherent superposition of states with different electric charge moving in the vicinity of a magnetic flux. Formally, it should acquire a (gauge-dependent) AB relative phase between the charge states, even for an incomplete loop. If measureable, such a geometric, rather than topological, AB-phase would seem to break gauge invariance. Wick, Wightman and Wigner argued that since (global) charge-dependent phase transformations are physically unobservable, charge state superpositions are unphysical (`charge superselection rule'). This would resolve the apparent paradox in a trivial way. However, Aharonov and Susskind disputed this superselection rule: they distinguished between such global charge-dependent transformations, and transformations of the relative inter-charge phases of two particles, and showed that the latter \emph{could} in principle be observable! Finally, the paradox again disappears once we considers the `calibration' of the phase measured by the Aharonov-Susskind phase detectors, as well as the phase of the particle at its initial point. It turns out that such a detector can only distinguish between the relative phases of two paths if their (oriented) difference forms a loop around the flux

    Enhancing retinal images by nonlinear registration

    Full text link
    Being able to image the human retina in high resolution opens a new era in many important fields, such as pharmacological research for retinal diseases, researches in human cognition, nervous system, metabolism and blood stream, to name a few. In this paper, we propose to share the knowledge acquired in the fields of optics and imaging in solar astrophysics in order to improve the retinal imaging at very high spatial resolution in the perspective to perform a medical diagnosis. The main purpose would be to assist health care practitioners by enhancing retinal images and detect abnormal features. We apply a nonlinear registration method using local correlation tracking to increase the field of view and follow structure evolutions using correlation techniques borrowed from solar astronomy technique expertise. Another purpose is to define the tracer of movements after analyzing local correlations to follow the proper motions of an image from one moment to another, such as changes in optical flows that would be of high interest in a medical diagnosis.Comment: 21 pages, 7 figures, submitted to Optics Communication

    Restrained Shrinkage of Fly Ash Based Geopolymer Concrete and Analysis of Long Term Shrinkage Prediction Models

    Get PDF
    The research presented in this manuscript describes the procedure to quantify the restrained shrinkage of geopolymer concrete (GPC) using ring specimen. Massive concrete structures are susceptible to shrinkage and thermal cracking. This cracking can increase the concrete permeability and decrease the strength and design life. This test is comprised of evaluating geopolymer concrete of six different mix designs including different activator solution to fly ash ratio and subjected to both restrained and free shrinkage. Test results obtained from this experimental setup was plotted along with the available empirical equation to observe the shrinkage strain of GPC and a model was suggested to predict the shrinkage strain of GPC. It was found from this study that along with activator solution to fly ash ratio the final compressive strength of GPC plays an important role on shrinkage strai

    Kinetic simulations of ladder climbing by electron plasma waves

    Get PDF
    The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth \textit{et al.} [PRL \textbf{115}, 075001 (2015)] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves \textit{per~se}
    corecore