We consider a particle in a coherent superposition of states with different
electric charge moving in the vicinity of a magnetic flux. Formally, it should
acquire a (gauge-dependent) AB relative phase between the charge states, even
for an incomplete loop. If measureable, such a geometric, rather than
topological, AB-phase would seem to break gauge invariance. Wick, Wightman and
Wigner argued that since (global) charge-dependent phase transformations are
physically unobservable, charge state superpositions are unphysical (`charge
superselection rule'). This would resolve the apparent paradox in a trivial
way. However, Aharonov and Susskind disputed this superselection rule: they
distinguished between such global charge-dependent transformations, and
transformations of the relative inter-charge phases of two particles, and
showed that the latter \emph{could} in principle be observable! Finally, the
paradox again disappears once we considers the `calibration' of the phase
measured by the Aharonov-Susskind phase detectors, as well as the phase of the
particle at its initial point. It turns out that such a detector can only
distinguish between the relative phases of two paths if their (oriented)
difference forms a loop around the flux