311 research outputs found

    Spin Polarization and Transport of Surface States in the Topological Insulators Bi2Se3 and Bi2Te3 from First Principles

    Full text link
    We investigate the band dispersion and the spin texture of topologically protected surface states in the bulk topological insulators Bi2Se3 and Bi2Te3 by first-principles methods. Strong spin-orbit entanglement in these materials reduces the spin-polarization of the surface states to ~50% in both cases; this reduction is absent in simple models but of important implications to essentially any spintronic application. We propose a way of controlling the magnitude of spin polarization associated with a charge current in thin films of topological insulators by means of an external electric field. The proposed dual-gate device configuration provides new possibilities for electrical control of spin.Comment: 4+ pages, 3 figure

    Non-Dirac topological surface states in (SnTe)n2_{n\geq2}(Bi2_2Te3_3)m=1_{m=1}

    Get PDF
    A new type of topological spin-helical surface states was discovered in layered van der Waals bonded (SnTe)n=2,3_{n=2,3}(Bi2_2Te3_3)m=1_{m=1} compounds which comprise two covalently bonded band inverted subsystems, SnTe and Bi2_2Te3_3, within a building block. This novel topological states demonstrate non-Dirac dispersion within the band gap. The dispersion of the surface state has two linear sections of different slope with shoulder feature between them. Such a dispersion of the topological surface state enables effective switch of the velocity of topological carriers by means of applying an external electric field

    First Results From Nanoindentation of Vapor Diffused Nb3Sn Films on Nb

    Full text link
    The mechanical vulnerability of the Nb3Sn-coated cavities is identified as one of the significant technical hurdles toward deploying them in practical accelerator applications in the not-so-distant future. It is crucial to characterize the material's mechanical properties in ways to address such vulnerability. Nanoindentation is a widely used technique for measuring the mechanical properties of thin films that involves indenting the film with a small diamond tip and measuring the force-displacement response to calculate the film's elastic modulus, hardness, and other mechanical properties. The nanoindentation analysis was performed on multiple vapor-diffused Nb3Sn samples coated at Jefferson Lab and Fermilab coating facilities for the first time. This contribution will discuss the first results obtained from the nanoindentation of Nb3Sn-coated Nb samples prepared via the Sn vapor diffusion technique.Comment: 21st Intl Conf Radio Frequency Superconductivity (SRF 2023

    Ab initio study of 2DEG at the surface of topological insulator Bi2Te3

    Get PDF
    By means of ab initio DFT calculation, we analyze the mechanism that drives the formation and evolution of the 2D electron gas (2DEG) states at the surface of Bi2Te3 topological insulator (TI). As it has been proved earlier it is due to an expansion of the van der Waals (vdW) spacing produced by intercalation of adsorbates. We will show that the effect of this expansion, in this particular surface, leads to several intriguing phenomena. On one hand we observe a different dispersion of the Dirac cone with respect to the ideal surface and the formation of Parabolic Bands (PB) below the conduction band and M-shaped bands in the valence band, the latters have been observed recently in photoemission experiments. On the other hand the expansion of the vdW gaps changes the symmetry of the orbitals forming the Dirac cone and therefore producing modifications in the local spin texture. The localization of these new 2DEG-states and the relocalization of the Dirac cone will be studied as well.This work was supported in part by the University of the Basque Country (project no. GVUPV/EHU, grant no. IT36607) and Ministerio de Ciencia e Inovacion (grant no. FIS201019609C0200). Calcula tions were performed on the Arina supercomputer of the Basque Country University.Peer reviewe

    Electronic and spin structure of a family of Sn-based ternary topological insulators

    Get PDF
    We report the bulk and surface electronic properties and spin polarization of a rich family of Sn-based ternary topological insulators studied by means of first-principles calculations within the framework of density functional theory. These compounds exist with the following stoichiometries: SnX2Te4,SnX4Te7, and SnBi6Te10 (X = Sb and Bi). Where a septuple layer or a quintuple layer and septuple layer blocks alternate along the hexagonal axis. We reveal that the bulk band gap in these compounds is about 100 meV and recognize a strong dependence of the spin polarization on the cleavage surface. The calculated spin polarization reaches 85% in some cases, that is one of the highest predicted values hitherto. Since the electron spin polarization is a relevant parameter for spintronics technology, this new family is suitable for applications within this field

    Measurements of RF Properties of Thin Film Nb\u3csub\u3e3\u3c/sub\u3eSn Superconducting Multilayers Using a Calorimetric Technique

    Get PDF
    Results of RF tests of NB3SN thin film samples related to the superconducting multilayer coating development are presented. We have investigated thin film samples of Nb3Sn/Al2O3/Nb with Nb3Sn layer thicknesses of 50 nm and 100 nm using a Surface Impedance Characterization system. These samples were measured in the temperature range 4 K-19 K, where significant screening by Nb3Sn layers was observed below 16-17 K, consistent with the bulk critical temperature of Nb3Sn

    Effect of Layer Thickness on Structural, Morphological and Superconducting Properties of Nb\u3csub\u3e3\u3c/sub\u3eSn Films Fabricated by Multilayer Sequential Sputtering

    Get PDF
    Superconducting Nb3Sn films can be synthesized by controlling the atomic concentration of Sn. Multilayer sequential sputtering of Nb and Sn thin films followed by high temperature annealing is considered as a method to fabricate Nb3Sn films, where the Sn composition of the deposited films can be controlled by the thickness of alternating Nb and Sn layers. We report on the structural, morphological and superconducting properties of Nb3Sn films fabricated by multilayer sequential sputtering of Nb and Sn films on sapphire substrates followed by annealing at 950 °C for 3 h. We have investigated the effect of Nb and Sn layer thickness and Nb:Sn ratio on the properties of the Nb3Sn films. The crystal structure, surface morphology, surface topography, and film composition were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectroscopy (EDS). The results showed Sn loss from the surface due to evaporation during annealing. Superconducting Nb3Sn films of critical temperature up to 17.93 K were fabricated

    Biological diversity of the coastal zone of the Crimean peninsula: problems, preservation and restoration pathways

    Get PDF
    The results of complex hydrochemical, hydrobiological and ichthyological investigations by IBSS, NAS of Ukraine, realized in 6 regions of the coastal zone of the Crimean peninsula in the Black Sea and the Sea of Azov are given. The main negative factors causing changes in structural and functional characteristics of hydrobiocenoses in the regions studied are analyzed and “hot ecological spots” are isolated. Variants of different methods of management of the coastal ecosystems, including construction of artificial reefs and usage of biological filters for water cleaning, protection and recreation of biological diversity are taken into consideration

    Mirror-symmetry protected non-TRIM surface state in the weak topological insulator Bi2TeI

    Get PDF
    Strong topological insulators (TIs) support topological surfaces states on any crystal surface. In contrast, a weak, time-reversal-symmetry-driven TI with at least one non-zero v1, v2, v3 ℤ2 index should host spin-locked topological surface states on the surfaces that are not parallel to the crystal plane with Miller indices (v1 v2 v3). On the other hand, mirror symmetry can protect an even number of topological states on the surfaces that are perpendicular to a mirror plane. Various symmetries in a bulk material with a band inversion can independently preordain distinct crystal planes for realization of topological states. Here we demonstrate the first instance of coexistence of both phenomena in the weak 3D TI Bi2TeI which (v1 v2 v3) surface hosts a gapless spin-split surface state protected by the crystal mirror-symmetry. The observed topological state has an even number of crossing points in the directions of the 2D Brillouin zone due to a non-TRIM bulk-band inversion. Our findings shed light on hitherto uncharted features of the electronic structure of weak topological insulators and open up new vistas for applications of these materials in spintronics

    Cylindrical Magnetron Development for Nb₃sn Deposition via Magnetron Sputtering

    Get PDF
    Due to its better superconducting properties (critical temperature Tc~ 18.3 K, superheating field Hsh~ 400 mT), Nb3Sn is considered as a potential alternative to niobium (Tc~ 9.25 K, Hsh~ 200 mT) for superconducting radiofrequency (SRF) cavities for particle acceleration. Magnetron sputtering is an effective method to produce superconducting Nb3Sn films. We deposited superconducting Nb3Sn films on samples with magnetron sputtering using co-sputtering, sequential sputtering, and sputtering from a stoichiometric target. Nb3Sn films produced by magnetron sputtering in our previous experiments have achieved DC superconducting critical temperature up to 17.93 K and RF superconducting transition at 17.2 K. A magnetron sputtering system with two identical cylindrical cathodes that can be used to sputter Nb3Sn films on cavities has been designed and is under development now. We report on the design and the current progress on the development of the system
    corecore