Old Dominion University

ODU Digital Commons

Electrical & Computer Engineering Faculty Publications

Electrical & Computer Engineering

2021

Cylindrical Magnetron Development for Nb₃sn Deposition via Magnetron Sputtering

Md. Nizam Sayeed Old Dominion University, msaye004@odu.edu

Hani Elsayed-Ali Old Dominion University, helsayed@odu.edu

C. Côté

M. A. Farzad

A. Sarkissian

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs

Part of the Electrical and Computer Engineering Commons, and the Engineering Physics Commons

Original Publication Citation

Sayeed, M.N., Elsayed-Ali, H., Côté, C., Farzad, M.A., Sarkissian, A., Eremeev, G.V., & Valente-Feliciano, A.M. (2021). *Cylindrical magnetron development for Nb₃sn deposition via magnetron sputtering*. 2021 International Conference on RF Superconductivity (SRF 2021), East Lansing, Michigan (Virtual). https://srf2021.vrws.de/papers/thptev015.pdf

This Conference Paper is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Authors

Md. Nizam Sayeed, Hani Elsayed-Ali, C. Côté, M. A. Farzad, A. Sarkissian, G. V. Eremeev, and A-M. Valente-Feliciano

CYLINDRICAL MAGNETRON DEVELOPMENT FOR Nb₃Sn DEPOSITION VIA MAGNETRON SPUTTERING*

 M. N. Sayeed[†], H. E. Elsayed-Ali, Old Dominion University, Norfolk, Virginia, USA
G. V. Eremeev, Fermi National Accelerator Laboratory, Batavia, Illinois, USA
A.M. Valente-Feliciano, Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA
C. Côté, M. Farzad, M. Patterson, A. Chang, A. Sarkissian

PLASMIONIQUE Inc., Varennes, QC, Canada

Abstract

Due to its better superconducting properties (critical temperature $T_c \sim 18.3$ K, superheating field $H_{sh} \sim 400$ mT), Nb₃Sn is considered as a potential alternative to niobium $(T_c \sim 9.25 \text{ K}, H_{sh} \sim 200 \text{ mT})$ for superconducting radiofrequency (SRF) cavities for particle acceleration. Magnetron sputtering is an effective method to produce superconducting Nb₃Sn films. We deposited superconducting Nb₃Sn films on samples with magnetron sputtering using co-sputtering, sequential sputtering, and sputtering from a stoichiometric target. Nb₃Sn films produced by magnetron sputtering in our previous experiments achieved DC superconducting critical temperature up to 17.93 K and RF superconducting transition at 17.2 K. A magnetron sputtering system with two identical cylindrical cathodes that can be used to sputter Nb₃Sn films on cavities has been designed and is under construction now. We report on the design and the current progress on the development of the system.

INTRODUCTION

Nb superconducting radiofrequency (SRF) cavities used in modern particle accelerators are reaching close to the theoretical limit for the quality factor and accelerating gradient due to the limited superconducting critical temperature T_c of 9.25 K and the superheating field H_{sh} of 200 mT [1,2]. Nb₃Sn promises a better performance than niobium due to the high T_c (18.3K) and H_{sh} (400 mT) [2]. Since Nb₃Sn is a brittle material, thin films of Nb₃Sn inside a Nb or Cu cavity are considered. The most widely used technique to coat Nb₃Sn inside the cavity is Sn vapor diffusion method [2-4]. Also, magnetron sputtering has been used to fabricate Nb₃Sn films on small substrates [5-12].

We have fabricated Nb₃Sn films on small Nb substrates by magnetron sputtering [7-12]. We are commissioning a

[†]msaye004@odu.edu

Λ

gress on the cylindrical sputtering system fabrication. m reon ct-Sputtering system fabrication. NB₃SN GROWTH BY MAGNETRON SPUTTERING We derestied superconducting Nh Sn films with me

We deposited superconducting Nb₃Sn films with magnetron sputtering in three ways: multilayer sputtering of Nb and Sn films followed by annealing, sputtering from a stoichiometric Nb₃Sn target, and co-sputtering of Nb and Sn followed by annealing. An AJA ATC Orion 5 Magnetron sputter coater was used for the fabrication. For the multilayered samples, we have deposited multiple layers of Nb and Sn films with a thickness of 20 and 10 nm respectively. The multilayers were annealed at 950 °C for 3 h. Figure 1 shows the transmission electron microscopic (TEM) images and EDS mapping of the cross-section of as-deposited multilayers and annealed Nb₃Sn film. The multilayers are easily distinguishable from the EDS mapping of the as-deposited films. The TEM-EDS mapping of the annealed film showed that Sn (green color in the mapping image) is uniformly diffused.

cylindrical sputtering system to fabricate Nb₃Sn films in-

side a 2.6 GHz SRF cavity. Here, we report our initial pro-

Figure 1: TEM image and EDS mapping of (a) as-deposited Nb-Sn multilayers, and (b) annealed Nb₃Sn film.

^{*}Authored by Jefferson Science Associates, LLC under U.S. DOE. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics. Contract No. DE-AC05-06OR23177.

THPTEV015

Fabrication method	T_c	ΔT_c	RRR
Multilayer sputtering	17.93	0.02	5.1
Stoichiometric target	17.83	0.03	5.41
Co-sputtering	17.6	0.22	3.63

Table 1: The Superconducting Properties of Nb₃Sn Films Fabricated by Three Different Magnetron Sputtering Processes

For the samples fabricated from a stoichiometric target, sputtering was performed at a 3 mTorr Ar pressure with a constant DC current of 150 mA on a substrate heated up to 800 °C. For co-sputtering, the powers of both targets were optimized to maintain the film stoichiometry and the co-sputtered samples were further annealed. The resistance vs temperature graph of the film co-sputtered at room temperature and further annealed at 950 °C for 3 h is shown in Fig. 2. The superconducting properties of the films are shown in Table 1.

The RF superconducting properties of the films were also measured using the surface impedance characterization (SIC) system at Jefferson lab. For the Nb₃Sn film fabricated by multilayer sputtering, a superconducting transition of 17.2 K was observed [12]. For the films sputtered from a stoichiometric target, the highest RF superconducting transition was observed at 17.44 K [11].

Figure 2: Resistance as a function of temperature of the Nb₃Sn film fabricated by co-sputtering.

CYLINDRICAL SPUTTERING SYSTEM

Design

A cylindrical magnetron sputtering system for deposition of a multilayer Nb and Sn layers, with its associated computer control unit has been designed and fabricated by PLASMIONIQUE Inc. The design of the sputtering system to fabricate Nb₃Sn films inside the SRF cavities is shown in Fig. 3. The goal of our current research is to establish a multilayer sputtering system to deposit Nb₃Sn films inside a single cell RF cavity. The system will be optimized further to apply co-sputtering and sputtering from a stoichiometric target. The system consists of two identical cylindrical magnetrons (Fig. 3(b)) facing to each other in a vacuum chamber. The movement of the magnetrons

are controlled by bellows and the cathode temperature is facilitated by water cooling.

Figure 3: Design of the sputter system: (a) the whole cylindrical sputtering system, (b) cross-section of the individual magnetron: A. cooling water inlet, B. water outlet, C. magnets, D. magnet spacers, E. target.

Plasma Discharge

Due to the complex shape of the cavity of the 2.6 GHz cavity, in order to obtain a uniform deposition, it was decided to limit the size of the magnetron length to 2". A large number of finite element simulations were performed to obtain an ideal magnet configuration. The plasma discharge for one configuration and the magnetic field strength of similar design are shown in Fig. 4.

The vacuum chamber for the system was designed by Kurt J. Lesker. The vacuum chamber and all required vacuum system components are ready for installation. The magnetrons based on the results are near completion.

1

Figure 4: (a) Plasma discharge with 40 W at 10 mTorr;, (b) the magnetic field strength plots of similar design.

CONCLUSION

A cylindrical magnetron sputtering system has been designed to fabricate Nb₃Sn films inside a 2.6 GHz cavity. The simulation and experimental results validated the design for SRF cavity coating. The fabrication procedure of the sputtering system has been initiated to commission the system for 2.6 GHz SRF cavity coating.

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics. The authors acknowledge Charles E. Reece for his suggestions and Uttar Pudasaini for his help with film fabrication.

REFERENCES

- H. Padamsee, J. Knobloch, and T. Hays, *RF Superconduc*tivity for Accelerators. Wiley Online Library, 2008.
- [2] U. Pudasaini *et al.*, "Initial growth of tin on niobium for vapor diffusion coating of Nb₃Sn," *Supercond. Sci. Technol.*, vol. 32, iss. 4, p. 18, 2018. https://doi.org/10. 1088 1361-6668/aafa88
- THPTEV015

- [3] S. Posen et al., "Advances in Nb₃Sn superconducting radiofrequency cavities towards first practical accelerator applications". Supercond. Sci. Technol., vol. 34, no. 2, p. 025007, 2021. https://doi.org/10.1088/1361-6668/abc7f7
- [4] R. D. Porter et al., "Next generation Nb₃Sn SRF cavities for linear accelerators", in Proc. 29th Linear Accelerator Conf. (LINAC'18), Beijing, China, Sep. 2018, pp. 462-465. doi:10.18429/JACOW-LINAC2018-TUP0055
- [5] E. Ilyina *et al.*, "Development of sputtered Nb₃Sn films on copper substrates for superconducting radiofrequency applications," *Supercond. Sci. Technol.*, vol. 32, no. 3, p. 035002, 2019. https://doi.org/10.1088/1361-6668/aaf61f
- [6] L. Xiao et al., "The study of deposition method of Nb₃Sn film on Cu substrate", in Proc. 18th Int. Conf. RF Superconductivity (SRF'17), Lanzhou, China, Jul. 2017, pp. 131-133. doi:10.18429/JACOW-SRF2017-MOPB036
- [7] M. N. Sayeed *et al.*, "Magnetron sputtering of Nb₃Sn for SRF cavities", in *Proc. 9th Int. Particle Accelerator Conf.* (*IPAC'18*), Vancouver, Canada, Apr.-May 2018, pp. 3946-3949. doi:10.18429/JAC0W-IPAC2018-THPAL129
- [8] M. N. Sayeed *et al.*, "Structural and superconducting properties of Nb₃Sn films grown by multilayer sequential magnetron sputtering," *J. Alloys Compd*, vol. 800, pp. 272-278, 2019. https://doi.org/10.1016/j. jall-com.2019.06.017
- [9] M. N. Sayeed et al., "Deposition of Nb₃Sn films by multilayer sequential sputtering for SRF cavity application", in *Proc. 19th Int. Conf. RF Superconductivity (SRF'19)*, Dresden, Germany, Jun.-Jul. 2019, pp. 637-641. https://doi:10.18429/JACOW-SRF2019-TUP079
- [10] M. N. Sayeed *et al.*, "Effect of layer thickness on structural, morphological and superconducting properties of Nb₃Sn films fabricated by multilayer sequential sputtering", *IOP Conf. Ser.: Mater. Sci. Eng.*, vol. 756, p. 012014, 2020. https://doi.org/10.1088/1757-899X/756/1/012014
- [11] M. N. Sayeed *et al.*, "Properties of Nb₃Sn films fabricated by magnetron sputtering from a single target". *Appl. Surf. Sci.*, vol. 541, p. 148528, 2021. https://doi.org/10.1016/j.apsusc.2020. 148528
- [12] M. N. Sayeed *et al.*, "Microstructural and superconducting radiofrequency properties of multilayer sequentially sputtered Nb₃Sn films", *IEEE Trans. Appl. Supercond.*, vol. 31, iss. 5, p. 3500404. doi:10.1109/TASC.2021. 3059816