11 research outputs found

    Advances and potentials of NiOx surface treatments for p-i-n perovskite solar cells

    No full text
    The performances of perovskite solar cells (PSCs) largely depend on the perovskite compositions and the selection of electron and hole transport layers (ETLs and HTLs). The p-type NiOx films are largely used as HTLs in p-i-n PSCs, thanks to their high transparency, processing versatility, cost-effectiveness, and easy integration within tandem devices. Several studies have shown that surface modifications on NiOx films remove the surface defects, increase the NiOx conductivity, and alter the band offset, consequently improving the interfaces between NiOx films and the perovskite active layer. Indeed, besides improving the NiOx intrinsic properties, the surface treatments also lead, in many cases, to superior perovskite quality driving high photovoltaic performance

    Efficient bandgap widening in co-evaporated MAPbI3 perovskite

    No full text
    Co-evaporated perovskite solar cells (PSCs) have demonstrated outstanding properties, such as great scalability, intrinsic stability, high-power conversion efficiency (PCE), and fabrication adaptability even on rough surfaces. At present, MAPbI3 is the most used co-evaporated perovskite due to the complexity of forming multi-component compositions by thermal evaporation. Even though PSCs with high PCEs have been obtained, the MAPbI3 bandgap (∼1.60 eV) is not ideal for multijunction devices. In this work, we propose a facile method to increase the bandgap of co-evaporated MAPbI3 (∼1.60 eV) through a MABr-based treatment. The best MABr-treated perovskite composition films show a bandgap of 1.66 eV (MAPb(Br0.18I0.82)3) and exhibit good spectral stability under continuous 1-sun illumination at the ambient conditions of 28 °C and 70% relative humidity. This hybrid method works efficiently for thick co-evaporated MAPbI3 films (∼750 nm), which is unusual for hybrid processes. The n-i-p PSCs built from the MAPb(Br0.18I0.82)3 films exhibit a blue-shifted external quantum efficiency and a Voc increase of ∼30 mV as compared to the pure MAPbI3 PSCs, in agreement with the bandgap widening observed in the films. This hybrid method to crete wide bandgap perovskites can be universally applied to MAPbI3 deposited on both flat and textured surfaces and shows great promise for its integration in monolithic tandems

    Association between HRAS rs12628 and rs112587690 polymorphisms with the risk of melanoma in the North American population.

    No full text
    HRAS belongs to the RAS genes superfamily. RAS genes are important players in several human tumors and the single-nucleotide polymorphism rs12628 has been shown to contribute to the risk of bladder, colon, gastrointestinal, oral, and thyroid carcinoma. We hypothesized that this SNP may affect the risk of cutaneous melanoma as well. HRAS gene contains a polymorphic region (rs112587690), a repeated hexanucleotide -GGGCCT- located in intron 1. Three alleles of this region, P1, P2, and P3, have been identified that contain two, three, and four repeats of the hexanucleotide, respectively. We investigated the clinical impact of these polymorphisms in a case-control study. A total of 141 melanoma patients and 118 healthy donors from the North America Caucasian population were screened for rs12628 and rs112587690 polymorphisms. Genotypes were assessed by capillary sequencing or fragment analysis, respectively, and rs12628 CC and rs112587690 P1P1 genotypes significantly associated with increased melanoma risk (OR = 3.83, p = 0.003; OR = 11.3, p = 0.033, respectively), while rs112587690 P1P3 frequency resulted significantly higher in the control group (OR = 0.5, p = 0.017). These results suggest that rs12628 C homozygosis may be considered a potential risk factor for melanoma development in the North American population possibly through the linkage to rs112587690

    <it>IRF5</it> gene polymorphisms in melanoma

    No full text
    Abstract Background Interferon regulatory factor (IRF)-5 is a transcription factor involved in type I interferon signaling whose germ line variants have been associated with autoimmune pathogenesis. Since relationships have been observed between development of autoimmunity and responsiveness of melanoma to several types of immunotherapy, we tested whether polymorphisms of IRF5 are associated with responsiveness of melanoma to adoptive therapy with tumor infiltrating lymphocytes (TILs). Methods 140 TILs were genotyped for four single nucleotide polymorphisms (rs10954213, rs11770589, rs6953165, rs2004640) and one insertion-deletion in the IRF5 gene by sequencing. Gene-expression profile of the TILs, 112 parental melanoma metastases (MM) and 9 cell lines derived from some metastases were assessed by Affymetrix Human Gene ST 1.0 array. Results Lack of A allele in rs10954213 (G > A) was associated with non-response (p in vitro between cell lines carrying or not the A allele could be applied to the transcriptional profile of 112 melanoma metastases to predict their responsiveness to therapy, suggesting that IRF5 genotype may influence immune responsiveness by affecting the intrinsic biology of melanoma. Conclusions This study is the first to analyze associations between melanoma immune responsiveness and IRF5 polymorphism. The results support a common genetic basis which may underline the development of autoimmunity and melanoma immune responsiveness.</p

    Versatile aza-BODIPY-based low-bandgap conjugated small molecule for light harvesting and near-infrared photodetection

    No full text
    The versatile nature of organic conjugated materials renders their flawless integration into a diverse family of optoelectronic devices with light-harvesting, photodetection, or light-emitting capabilities. Classes of materials that offer the possibilities of two or more distinct optoelectronic functions are particularly attractive as they enable smart applications while providing the benefits of the ease of fabrication using low-cost processes. Here, we develop a novel, multi-purpose conjugated small molecule by combining boron-azadipyrromethene (aza-BODIPY) as electron acceptor with triphenylamine (TPA) as end-capping donor units. The implemented donor–acceptor–donor (D–A–D) configuration, in the form of TPA-azaBODIPY-TPA, preserves ideal charge transfer characteristics with appropriate excitation energy levels, with the additional ability to be used as either a charge transporting interlayer or light-sensing semiconducting layer in optoelectronic devices. To demonstrate its versatility, we first show that TPA-azaBODIPY-TPA can act as an excellent hole transport layer in methylammonium lead triiodide (MAPbI3)-based perovskite solar cells with measured power conversion efficiencies exceeding 17%, outperforming control solar cells with PEDOT:PSS by nearly 60%. Furthermore, the optical bandgap of 1.49 eV is shown to provide significant photodetection in the wavelength range of up to 800 nm where TPA-azaBODIPY-TPA functions as donor in near-infrared organic photodetectors (OPDs) composed of fullerene derivatives. Overall, the established versatility of TPA-azaBODIPY-TPA, combined with its robust thermal stability as well as excellent solubility and processability, provides a new guide for developing highly efficient multi-purpose electronic materials for the next-generation of smart optoelectronic devices. (Figure presented.).</p
    corecore