316 research outputs found

    Lacrimal gland tumors in Turkey: types, frequency, and outcomes.

    Get PDF
    AIM: To evaluate the clinical, radiological, and treatment features of lacrimal gland tumors. METHODS: Retrospective review of 99 eyes of 92 patients with lacrimal gland tumors diagnosed and managed in a single institution between January 1999 and March 2017. Clinical and radiological features, histopathology, treatment methods, and prognosis were evaluated. RESULTS: The mean patient age was 40.3 (range: 7-80)y. The diagnosis was made histopathologically in 91 (91.9%) tumors and on a clinical and radiological basis in 8 (8.1%) tumors. Final diagnoses included idiopathic orbital inflammation (pseudotumor) in 46 (46.5%) lesions, pleomorphic adenoma in 14 (14.1%), adenoid cystic carcinoma in 12 (12.1%), granulomatous inflammation in 10 (10.1%), lymphoma in 5 (5.0%), benign reactive lymphoid hyperplasia in 3 (3.0%), dacryops in 3 (3.0%), carcinoma ex pleomorphic adenoma in 2 (2.0%), adenocarcinoma in 1 (1.0%), dermoid cyst in 1 (1.0%), cavernous hemangioma in 1 (1.0%), and leukemic infiltration in 1 (1.0%). Non-epithelial tumors comprised 64.6% ( CONCLUSION: Overall, 65% of lacrimal gland tumors were of non-epithelial origin and 32% of epithelial origin. By histopathology and clinical evaluation, 79% of lacrimal gland tumors were benign. The most common lacrimal gland tumors include idiopathic orbital inflammation (46.5%), epithelial (32.3%), and lymphoproliferative (8.1%) lesions

    Extensions to common laplace and fourier transforms

    Get PDF
    Cataloged from PDF version of article.The extended versions of common Laplace and Fourier transforms are given. This is achieved by defining a new function fe(p), p 2 C related to the function to be transformed f(t), t 2 R. Then fe(p) is transformed by an integral whose path is defined on an inclined line on the complex plane. The slope of the path is the parameter of the extended definitions which reduce to common transforms with zero slope. Inverse transforms of the extended versions are also defined. These proposed definitions, when applied to filtering in complex ordered fractional Fourier stages, significantly reduce the required computation

    Phototropin-mediated perception of light direction in leaves regulates blade flattening.

    Get PDF
    One conserved feature among angiosperms is the development of flat thin leaves. This developmental pattern optimizes light capture and gas exchange. The blue light (BL) receptors phototropins are required for leaf flattening, with the null phot1phot2 mutant showing curled leaves in Arabidopsis (Arabidopsis thaliana). However, key aspects of their function in leaf development remain unknown. Here, we performed a detailed spatiotemporal characterization of phototropin function in Arabidopsis leaves. We found that phototropins perceive light direction in the blade, and, similar to their role in hypocotyls, they control the spatial pattern of auxin signaling, possibly modulating auxin transport, to ultimately regulate cell expansion. Phototropin signaling components in the leaf partially differ from hypocotyls. Moreover, the light response on the upper and lower sides of the leaf blade suggests a partially distinct requirement of phototropin signaling components on each side. In particular, NON PHOTOTROPIC HYPOCOTYL 3 showed an adaxial-specific function. In addition, we show a prominent role of PHYTOCHROME KINASE SUBSTRATE 3 in leaf flattening. Among auxin transporters, PIN-FORMED 3,4,7 and AUXIN RESISTANT 1 (AUX1)/LIKE AUXIN RESISTANT 1 (LAX1) are required for the response while ABCB19 has a regulatory role. Overall, our results show that directional BL perception by phototropins is a key aspect of leaf development, integrating endogenous and exogenous signals

    Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies

    Get PDF
    The fabrication details to form large area systematically changing multishape nanoscale structures on a chip by laser interference lithography (LIL) are described. The feasibility of fabricating different geometries including dots, ellipses, holes, and elliptical holes in both x- and y- directions on a single substrate is shown by implementing a Lloyd\u27s interferometer. The fabricated structures at different substrate positions with respect to exposure time, exposure angle and associated light intensity profile are analyzed. Experimental details related to the fabrication of symmetric and biaxial periodic nanostructures on photoresist, silicon surfaces, and ion milled glass substrates are presented. Primary rat calvarial osteoblasts were grown on ion-milled glass substrates with nanotopography with a periodicity of 1200 nm. Fluorescent microscopy revealed that cells formed adhesions sites coincident with the nanotopography after 24 h of growth on the substrates. The results suggest that laser LIL is an easy and inexpensive method to fabricate systematically changing nanostructures for cell adhesion studies. The effect of the different periodicities and transition structures can be studied on a single substrate to reduce the number of samples significantly

    A Reference High-Pressure CO2\u3c/sub\u3e Adsorption Isotherm for Ammonium ZSM-5 Zeolite: Results of an Interlaboratory Study

    Get PDF
    © 2018, The Author(s). This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess carbon dioxide adsorption isotherms on NIST Reference Material RM 8852 (ammonium ZSM-5 zeolite), at 293.15 K (20 °C) from 1 kPa up to 4.5 MPa. Eleven laboratories participated in this exercise and, for the first time, high-pressure adsorption reference data are reported using a reference material. An empirical reference equation nex=d(1+exp[(-ln(P)+a)/b])c, [nex-surface excess uptake (mmol/g), P-equilibrium pressure (MPa), a = −6.22, b = 1.97, c = 4.73, and d = 3.87] along with the 95% uncertainty interval (Uk = 2 = 0.075 mmol/g) were determined for the reference isotherm using a Bayesian, Markov Chain Monte Carlo method. Together, this zeolitic reference material and the associated adsorption data provide a means for laboratories to test and validate high-pressure adsorption equipment and measurements. Recommendations are provided for measuring reliable high-pressure adsorption isotherms using this material, including activation procedures, data processing methods to determine surface excess uptake, and the appropriate equation of state to be used

    A Reference High-Pressure CO2 Adsorption Isotherm for Ammonium ZSM-5 Zeolite: Results of an Interlaboratory Study

    Get PDF
    © 2018, The Author(s). This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess carbon dioxide adsorption isotherms on NIST Reference Material RM 8852 (ammonium ZSM-5 zeolite), at 293.15 K (20 °C) from 1 kPa up to 4.5 MPa. Eleven laboratories participated in this exercise and, for the first time, high-pressure adsorption reference data are reported using a reference material. An empirical reference equation nex=d(1+exp[(-ln(P)+a)/b])c, [nex-surface excess uptake (mmol/g), P-equilibrium pressure (MPa), a = −6.22, b = 1.97, c = 4.73, and d = 3.87] along with the 95% uncertainty interval (Uk = 2 = 0.075 mmol/g) were determined for the reference isotherm using a Bayesian, Markov Chain Monte Carlo method. Together, this zeolitic reference material and the associated adsorption data provide a means for laboratories to test and validate high-pressure adsorption equipment and measurements. Recommendations are provided for measuring reliable high-pressure adsorption isotherms using this material, including activation procedures, data processing methods to determine surface excess uptake, and the appropriate equation of state to be used
    corecore