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Extensions to Common Laplace
and Fourier Transforms

Levent Onural,Senior Member, IEEE,M. Fatih Erden, and Haldun M. Ozaktas

Abstract—The extended versions of common Laplace and
Fourier transforms are given. This is achieved by defining a new
function fe(p), p 2 C related to the function to be transformed
f(t), t 2 R. Then fe(p) is transformed by an integral whose path
is defined on an inclined line on the complex plane. The slope of
the path is the parameter of the extended definitions which reduce
to common transforms with zero slope. Inverse transforms of the
extended versions are also defined. These proposed definitions,
when applied to filtering in complex ordered fractional Fourier
stages, significantly reduce the required computation.

Index Terms—Filtering, Fourier transform, fractional Fourier
transform, Laplace transform.

I. BASIC DEFINITIONS AND INTERPRETATIONS

I T IS possible to extend the common definitions of Laplace
and Fourier transforms; the benefits are numerous. An

extension is presented in this paper, together with its appli-
cation to a specific problem. The solution of the problem is
significantly simplified by the presented extension.

We adopt the following Fourier and two-sided Laplace
transforms:

(1)

(2)

The inversion formulas can be written, accordingly.
Let us define two complex planes,-plane and -plane, as

and . Furthermore, let us define an
-axis on -plane as a straight line that passes through the

origin making an angle with the real axis as shown in Fig. 1.
A -axis is defined similarly on the-plane. These lines are
denoted as and , respectively.

Suppose that a function is given; i.e., in
is real valued but may take complex values. Let us define
another function , which is related to as follows:

(3)

The real and imaginary parts of , related to ,
are shown in Fig. 2.

Here is the extended version of the Fourier transform,,
of (which can also be viewed as the extended version of
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(a)

(b)

Fig. 1. LinesL� andL� with slopes� and � are shown on two separate
complex planes.

the Laplace transform):

(4)

The inverse transform then becomes

(5)

if .
The extension as described above can be interpreted in

various ways. Here is one of them: What is first achieved
by replacing the real by a complex in a given is a
conversion of a one-dimensional (1-D) real variable function
to a two-dimensional (2-D) real variable function (function
of a complex variable). The line gives a 1-D profile of
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(a)

(b)

Fig. 2. Real and imaginary parts offe(p) whenf(t) = e�t in (3). (a) Real
part. (b) Imaginary part.

this 2-D function. Knowing any such profile (provided that
is known, too) the complete 2-D function is also known.

However, now we have a choice of an (in the common
definition, the is always zero), which would give a 1-D
function that is more suitable for Fourier operations for a given
purpose. The is also a 2-D real variable function; the 1-D
profile over becomes the common 1-D Fourier transform
of the 1-D function over provided that . This
relationship may be exploited in various applications. Another
interpretation can be made in terms of the integration paths on
the complex planes: The common transform and its inversion
are evaluated by integrals over-axis (pure real) and -axis
(pure imaginary), respectively. Now, the transform integral
path is rotated by an angle, together with a conversion of a
function of a real variable to a function of a complex variable.
As a consequence, the path of the inverse transform on the
complex-plane is also rotated by an angle .

Note that sampling of the extended Fourier and inverse
transforms as described in (4) and (5) is straightforward.

Fig. 3. This configuration performs filtering in complex order fractional
Fourier domains.Ba and Ba are the kernels of the fractional Fourier
transform of (6) corresponding to complex fractionsa1 anda2, respectively.
The multipliersh1(�), h2(�), h3(�), and the complex ordersa1, a2 are known.
We obtain the filtered outputy(�) for any inputx(�).

Fig. 4. Equivalent system of the configuration shown in Fig. 3.F together
with �1 and�2 indicates the extended Fourier transform of (4) with transform
integral pathsL� andL� , respectively. The multiplierŝh1(�), ĥ2(�), ĥ3(�),
the outputŷ(�), and the angles�1 and�2 of the extended Fourier transform
stages are obtained from (8)–(12).

Therefore, corresponding discrete transform can be obtained.
This is essential for efficient numerical computations.

II. A N APPLICATION

The th-order fractional Fourier transform of the
function is defined for as

(6)

where , and are functions of the order, and can be
expressed as

(7)

with and sgn . The kernel is defined

separately for and as

and , respectively [1]. The definition
is easily extended outside the interval by noting that

for any integer . Both and are interpreted
as dimensionless variables. The properties of the fractional
Fourier transform may be found in [1]–[6].

Note that in (6) is taken as a real variable in most
of the cases. However, it can also be a complex variable
[7]. Let us consider the filtering problem shown in Fig. 3,
which represents a physical setup when the signals are 2-D.
For simplicity, we analyze the 1-D version here. In this figure,
we have two complex order fractional Fourier transform stages
sandwiched between three multipliers. The multipliers ,

, , and the complex orders , are known. We
want to obtain the output for any input . After
straightforward algebra, we obtain the equivalent system as
shown in Fig. 4. In this figure, the multipliers , ,

, the output , and the angles and of the extended
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Fourier transform stages are related to , , , ,
and as

(8)

(9)

(10)

(11)

(12)

In these equations, , , and are associated with
; and , , and are associated with through (6).

Thus, the problem of filtering in complex order fractional
Fourier domains can also be expressed in terms of the proposed
extended Fourier transform definition of (4).

We do not have a direct fast computational algorithm for the
complex order fractional Fourier transform. However, since
Figs. 3 and 4 are equivalent, the computation of filtering in
complex order fractional Fourier domains (Fig. 3) can now
be carried out by the discrete version of the extended Fourier
transform (Fig. 4). Thus, a fast computation is now achieved.

III. CONCLUSION

In this letter, it is shown that the extended definitions of
the common Laplace and Fourier transforms provide a useful
framework for some applications. These extended definitions
are more general than the conventional counterparts and, thus,
may pave the road for many new applications.
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