269 research outputs found

    Clinical spectrum of early onset “Mediterranean” (homozygous p.P131L mutation) mitochondrial neurogastrointestinal encephalomyopathy

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive mitochondrial disorder characterized by cumulative and progressive gastrointestinal and neurological findings. This retrospective observational study, aimed to explore the time of presentation, diagnosis and clinical follow-up of 13 patients with a confirmed MNGIE disease of Mediterranean origin. The mean age of symptom onset was 7 years (6 months−21 years) and the average diagnosis age was 15.4 years ±8.4. Four of 13 patients (30%) died before 30 years at the mean age of 19.7 years ±6.8. Cachexia and gastrointestinal symptoms were observed in all patients (100%). The mean body mass index standard deviation score at diagnosis was 4.8 ± 2.8. At least three subocclusive episodes were presented in patients who died in last year of their life. The main neurological symptom found in most patients was peripheral neuropathy (92%). Ten patients (77%) had leukoencephalopathy and the remaining three patients without were under 10 years of age. The new homozygous “Mediterranean” TYMP mutation, p.P131L (c.392 C > T) was associated with an early presentation and poor prognosis in nine patients (69%) from five separates families. Based on the observations from this Mediterranean MNGIE cohort, we propose that the unexplained abdominal pain combined with cachexia is an indicator of MNGIE. High-platelet counts and nerve conduction studies may be supportive laboratory findings and the frequent subocclusive episodes could be a negative prognostic factor for mortality. Finally, the homozygous p.P131L (c.392 C > T) mutation could be associated with rapid progressive disease with poor prognosis

    A validated microRNA profile with predictive potential in glioblastoma patients treated with bevacizumab

    Get PDF
    Purpose: We investigated whether microRNA expression data from glioblastoma could be used to produce a profile that defines a bevacizumab responsive group of patients. Patients and Methods: TCGA microRNA expression data from tumors resected at first diagnosis of glioblastoma in patients treated with bevacizumab at any time during the course of their disease were randomly separated into training (n=50) and test (n=37) groups for model generation. MicroRNA-seq data for 51 patients whose treatment included bevacizumab in the BELOB trial were used as an independent validation cohort. Results: Using penalized regression we identified 8 microRNAs as potential predictors of overall survival in the training set. We dichotomized the response score based on the most prognostic minimum of a density plot of the response scores (log-rank HR=0.16, p=1.2e-5) and validated the profile in the test cohort (one-sided log-rank HR=0.34, p=0.026). Analysis of the profile using all samples in the TCGA glioblastoma dataset, regardless of treatment received, (n=473) showed that the prediction of patient benefit was not significant (HR=0.84, p=0.083) suggesting the profile is specific to bevacizumab. Further independent validation of our microRNA profile in RNA-seq data from patients treated with bevacizumab (alone or in combination with CCNU) at glioblastoma recurrence in the BELOB trial confirmed that our microRNA profile predicted patient benefit from bevacizumab (HR=0.59, p=0.043). Conclusion: We have identified and validated an 8-microRNA profile that predicts overall survival in patients with glioblastoma treated with bevacizumab. This may be useful for identifying patients who are likely to benefit from this agent

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis

    Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention

    Coccidian Infection Causes Oxidative Damage in Greenfinches

    Get PDF
    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research
    • 

    corecore