58 research outputs found

    Cannabis use in patients with early psychosis is associated with alterations in putamen and thalamic shape

    Get PDF
    Around half of patients with early psychosis have a history of cannabis use. We aimed to determine if there are neurobiological differences in these the subgroups of persons with psychosis with and without a history of cannabis use. We expected to see regional deflations in hippocampus as a neurotoxic effect and regional inflations in striatal regions implicated in addictive processes. Volumetric, T1w MRIs were acquired from people with a diagnosis psychosis with (PwP + C = 28) or without (PwP − C = 26) a history of cannabis use; and Controls with (C + C = 16) or without (C − C = 22) cannabis use. We undertook vertex‐based shape analysis of the brainstem, amygdala, hippocampus, globus pallidus, nucleus accumbens, caudate, putamen, thalamus using FSL FIRST. Clusters were defined through Threshold Free Cluster Enhancement and Family Wise Error was set at p < .05. We adjusted analyses for age, sex, tobacco and alcohol use. The putamen (bilaterally) and the right thalamus showed regional enlargement in PwP + C versus PwP − C. There were no areas of regional deflation. There were no significant differences between C + C and C − C. Cannabis use in participants with psychosis is associated with morphological alterations in subcortical structures. Putamen and thalamic enlargement may be related to compulsivity in patients with a history of cannabis use

    Metastable Atrial State Underlies the Primary Genetic Substrate for MYL4 Mutation-Associated Atrial Fibrillation

    Get PDF
    Background:Atrial fibrillation (AF) is the most common clinical arrhythmia and is associated with heart failure, stroke, and increased mortality. The myocardial substrate for AF is poorly understood because of limited access to primary human tissue and mechanistic questions around existing in vitro or in vivo models.Methods:Using an MYH6:mCherry knock-in reporter line, we developed a protocol to generate and highly purify human pluripotent stem cell–derived cardiomyocytes displaying physiological and molecular characteristics of atrial cells. We modeled human MYL4 mutants, one of the few definitive genetic causes of AF. To explore non–cell-autonomous components of AF substrate, we also created a zebrafish Myl4 knockout model, which exhibited molecular, cellular, and physiologic abnormalities that parallel those in humans bearing the cognate mutations.Results:There was evidence of increased retinoic acid signaling in both human embryonic stem cells and zebrafish mutant models, as well as abnormal expression and localization of cytoskeletal proteins, and loss of intracellular nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide + hydrogen. To identify potentially druggable proximate mechanisms, we performed a chemical suppressor screen integrating multiple human cellular and zebrafish in vivo endpoints. This screen identified Cx43 (connexin 43) hemichannel blockade as a robust suppressor of the abnormal phenotypes in both models of MYL4 (myosin light chain 4)–related atrial cardiomyopathy. Immunofluorescence and coimmunoprecipitation studies revealed an interaction between MYL4 and Cx43 with altered localization of Cx43 hemichannels to the lateral membrane in MYL4 mutants, as well as in atrial biopsies from unselected forms of human AF. The membrane fraction from MYL4-/- human embryonic stem cell derived atrial cells demonstrated increased phospho-Cx43, which was further accentuated by retinoic acid treatment and by the presence of risk alleles at the Pitx2 locus. PKC (protein kinase C) was induced by retinoic acid, and PKC inhibition also rescued the abnormal phenotypes in the atrial cardiomyopathy models.Conclusions:These data establish a mechanistic link between the transcriptional, metabolic and electrical pathways previously implicated in AF substrate and suggest novel avenues for the prevention or therapy of this common arrhythmia.</p

    Characterizing domain-specific open educational resources by linking ISCB Communities of Special Interest to Wikipedia

    Get PDF
    Wikipedia is one of the most important channels for the public communication of science and is frequently accessed as an educational resource in computational biology. Joint efforts between the International Society for Computational Biology (ISCB) and the Computational Biology taskforce of WikiProject Molecular Biology (a group of expert Wikipedia editors) have considerably improved computational biology representation on Wikipedia in recent years. However, there is still an urgent need for further improvement in quality, especially when compared to related scientific fields such as genetics and medicine. Facilitating involvement of members from ISCB Communities of Special Interest (COSIs) would improve a vital open education resource in computational biology, additionally allowing COSIs to provide a quality educational resource highly specific to their subfield.We generate a list of around 1500 English Wikipedia articles relating to computational biology and describe the development of a binary COSI-Article matrix, linking COSIs to relevant articles and thereby defining domain-specific open educational resources. Our analysis of the COSI-Article matrix data provides a quantitative assessment of computational biology representation on Wikipedia against other fields and at a COSI-specific level. Furthermore, we conducted similarity analysis and subsequent clustering of COSI-Article data to provide insight into potential relationships between COSIs. Finally, based on our analysis, we suggest courses of action to improve the quality of computational biology representation on Wikipedia

    Risk of sudden cardiac death associated with QRS, QTc, and JTc intervals in the general population

    Get PDF
    BackgroundQRS duration and corrected QT (QTc) interval have been associated with sudden cardiac death (SCD), but no data are available on the significance of repolarization component (JTc interval) of the QTc interval as an independent risk marker in the general population.ObjectiveIn this study, we sought to quantify the risk of SCD associated with QRS, QTc, and JTc intervals.MethodsThis study was conducted using data from 3 population cohorts from different eras, comprising a total of 20,058 individuals. The follow-up period was limited to 10 years and age at baseline to 30–61 years. QRS duration and QT interval (Bazett’s) were measured from standard 12-lead electrocardiograms at baseline. JTc interval was defined as QTc interval – QRS duration. Cox proportional hazards models that controlled for confounding clinical factors identified at baseline were used to estimate the relative risk of SCD.ResultsDuring a mean period of 9.7 years, 207 SCDs occurred (1.1 per 1000 person-years). QRS duration was associated with a significantly increased risk of SCD in each cohort (pooled hazard ratio [HR] 1.030 per 1-ms increase; 95% confidence interval [CI] 1.017–1.043). The QTc interval had borderline to significant associations with SCD and varied among cohorts (pooled HR 1.007; 95% CI 1.001–1.012). JTc interval as a continuous variable was not associated with SCD (pooled HR 1.001; 95% CI 0.996–1.007).ConclusionProlonged QRS durations and QTc intervals are associated with an increased risk of SCD. However, when the QTc interval is deconstructed into QRS and JTc intervals, the repolarization component (JTc) appears to have no independent prognostic value.</p

    Gender difference in age at onset of schizophrenia:a meta-analysis

    Get PDF
    corecore