50 research outputs found

    Ubiquitin-independent proteasomal degradation

    Get PDF
    AbstractMost proteasome substrates are marked for degradation by ubiquitin conjugation, but some are targeted by other means. The properties of these exceptional cases provide insights into the general requirements for proteasomal degradation. Here the focus is on three ubiquitin-independent substrates that have been the subject of detailed study. These are Rpn4, a transcriptional regulator of proteasome homeostasis, thymidylate synthase, an enzyme required for production of DNA precursors and ornithine decarboxylase, the initial enzyme committed to polyamine biosynthesis. It can be inferred from these cases that proteasome association and the presence of an unstructured region are the sole prerequisites for degradation. Based on that inference, artificial substrates have been designed to test the proteasome's capacity for substrate processing and its limitations. Ubiquitin-independent substrates may in some cases be a remnant of the pre-ubiquitome world, but in other cases could provide optimized regulatory solutions. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf

    Ubiquitin-independent proteasomal degradation.

    No full text

    Functional asymmetries of proteasome translocase pore.

    No full text

    Interactions de la CP12 chez des organismes photosynthétiques (relation "flexibilité-fonction")

    No full text
    La CP12 est essentielle à la formation et à la régulation d un complexe photosynthétique composé de glycéraldehyde-3-phosphate deshydrogenase (GAPDH) et de phosphoribulokinase, deux enzymes clef du cycle de Calvin. La GAPDH de Chlamydomonas reinhardtii ne possède pas de régulation redox autonome et c est la CP12 qui lui apporte cette régulation. Récemment, un autre partenaire de la CP12, l aldolase, a été identifié. La régulation de la GAPDH de la diatomée Asterionella formosa a aussi été étudiée. La CP12 a les propriétés d une protéine intrinsèquement déstructurée (IUP) car elle a peu structurée. Les IUPs peuvent avoir différents rôles. En plus de son rôle d effecteur, en modifiant les propriétés rédox de la GAPDH, la CP12 a une fonction de chaperon pour la GAPDH. Des expériences de marquage de spin, suivi par résonance paramagnétique électronique ont été réalisées afin d étudier l interaction GAPDH/CP12. Ces études ont permis de mettre en évidence un nouveau rôle de la GAPDH qui implique des réactions d échange de thiol-pont disulfure entre les deux partenaires. Une autre fonction de la CP12 doit être liée à sa capacité à fixer un ion cuivrique. Le site de fixation du Cu2+ a été étudié et implique trois régions de la CP12.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Exploring CP12 binding proteins revealed aldolase as a new partner for the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex - purification and kinetic characterization of this enzyme from Chlamydomonas reinhardtii.

    No full text
    International audiencePossible binding proteins of CP12 in a green alga, Chlamydomonas reinhardtii, were investigated. We covalently immobilized CP12 on a resin and then used it to trap CP12 partners. Thus, we found an association between CP12 and phosphoribulokinase (EC 2.7.1.19), glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) and aldolase. Immunoprecipitation with purified CP12 antibodies supported these data. The dissociation constant between CP12 and fructose 1,6-bisphosphate (EC 4.1.2.13) aldolase was measured by surface plasmon resonance and is equal to 0.48 +/- 0.05 mum and thus corroborated an interaction between CP12 and aldolase. However, the association is even stronger between aldolase and the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex and the dissociation constant between them is equal to 55+/-5 nm. Moreover, owing to the fact that aldolase has been poorly studied in C. reinhardtii, we purified it and analyzed its kinetic properties. The enzyme displayed Michaelis-Menten kinetics with fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate, with a catalytic constant equal to 35 +/- 1 s(-1) and 4 +/- 0.1 s(-1), respectively. The K(m) value for fructose 1,6-bisphosphate was equal to 0.16 +/- 0.02 mm and 0.046 +/- 0.005 mm for sedoheptulose 1,7-bisphosphate. The catalytic efficiency of aldolase was thus 219 +/- 31 s(-1).mm(-1) with fructose 1,6-bisphosphate and 87 +/- 9 s(-1).mm(-1) with sedoheptulose 1,7-bisphosphate. In the presence of the complex, this parameter for fructose 1,6-bisphosphate increased to 310 +/- 23 s(-1).mm(-1), whereas no change was observed with sedoheptulose 1,7-bisphosphate. The condensation reaction of aldolase to form fructose 1,6-bisphosphate was also investigated but no effect of CP12 or the complex on this reaction was observed

    Mapping of a copper-binding site on the small CP12 chloroplastic protein of Chlamydomonas reinhardtii using top-down mass spectrometry and site-directed mutagenesis

    No full text
    International audienceCP12 is a small chloroplastic protein involved in the Calvin cycle that was shown to bind copper, a metal ion involved in modulation of its transition from reduced to oxidized state. In order to describe CP12 copper binding properties, copper-IMAC experiments and site-directed mutagenesis based on computational modeling, were coupled to top-down mass spectrometry (ESI-MS and MSMS). Copper-IMAC experiments allowed the primary characterization of mutation effects upon copper binding. Top-down MSMS experiments carried out under non-denaturing conditions on wild-type and mutant CP12/Cu2+ complexes then allowed fragment ions specifically liganding the copper ion to be determined. Comparison of MSMS datasets defined three regions involved in metal ion binding: residues D16 to D23, D38 to K50 and D70 to E76, with the two first regions containing selected residues for mutation. These data confirmed that copper ligands involved glutamic and aspartic residues in contrast to typical protein copper chelators. We propose that copper might play a role in regulation of CP12 biological activity
    corecore