49 research outputs found

    On the analysis of the contact angle for impacting droplets using a polynomial fitting approach

    Get PDF
    ractical considerations on the measurement of the dynamic contact angle and the spreading diameter of impacting droplets are discussed in this paper. The contact angle of a liquid is commonly obtained either by a polynomial or a linear fitting to the droplet profile around the triple phase point. Previous works have focused on quasi-static or sessile droplets, or in cases where inertia does not play a major role on the contact angle dynamics. Here, we study the effect of droplet shape, the order of the fitting polynomial, and the fitting domain, on the measurement of the contact angle on various stages following droplet impact where the contact line is moving. Our results, presented in terms of the optical resolution and the droplet size, show that a quadratic fitting provides the most consistent results for a range of various droplet shapes. As expected, our results show that contact angle values are less sensitive to the fitting conditions for the cases where the droplet can be approximated to a spherical cap. Our experimental conditions include impact events with liquid droplets of different sizes and viscosities on various substrates. In addition, validating past works, our results show that the maximum spreading diameter can be parameterised by the Weber number and the rapidly advancing contact angle

    Controlling and characterising the deposits from polymer droplets containing microparticles and salt

    Get PDF
    It is very well known that as suspension droplets evaporate, a pinned contact line leads to strong outwards capillary flow resulting in a robust coffee ring-stain at the periphery of the droplet. Conversely tall pillars are deposited in the centre of the droplet when aqueous droplets of poly(ethylene oxide) evaporate following a boot-strapping process in which the contact line undergoes fast receding, driven by polymer precipitation. Here we map out the phase behaviour of a combined particle-polymer system, illustrating a range of final deposit shapes, from ring-stain to flat deposit to pillar. Deposit topologies are measured using profile images and stylus profilometery, and characterised using the skewness of the profile as a simple analytic method for quantifying the shapes: pillars produce positive skew, flat deposits have zero skew and ring-stains have a negative value. We also demonstrate that pillar formation can be disrupted using potassium sulphate salt solutions, which change the water from a good solvent to a thetapoint solvent, consequently reducing the size of the polymer coils. This inhibits polymer crystallisation, interfering with the bootstrap process and ultimately preventing pillars from forming. Again, the deposit shapes are quantified using the skew parameter

    Synthesis of colloidal microgels using oxygen- controlled flow lithography †

    No full text
    We report a synthesis approach based on stop-flow lithography (SFL) for fabricating colloidal microparticles with any arbitrary 2D-extruded shape. By modulating the degree of oxygen inhibition during synthesis, we achieved previously unattainable particle sizes. Brownian diffusion of colloidal discs in bulk suggests the out-of-plane dimension can be as small as 0.8 mm, which agrees with confocal microscopy measurements. We measured the hindered diffusion of microdiscs near a solid surface and compared our results to theoretical predictions. These colloidal particles can also flow through physiological microvascular networks formed by endothelial cells undergoing vasculogensis under minimal hydrostatic pressure ($5 mm H 2 O). This versatile platform creates future opportunities for on-chip parametric studies of particle geometry effects on particle passage properties, distribution and cellular interactions

    Sectional notes

    No full text
    corecore