1,347 research outputs found

    Immunology of naturally transmissible tumours.

    Get PDF
    Naturally transmissible tumours can emerge when a tumour cell gains the ability to pass as an infectious allograft between individuals. The ability of these tumours to colonize a new host and to cross histocompatibility barriers contradicts our understanding of the vertebrate immune response to allografts. Two naturally occurring contagious cancers are currently active in the animal kingdom, canine transmissible venereal tumour (CTVT), which spreads among dogs, and devil facial tumour disease (DFTD), among Tasmanian devils. CTVT are generally not fatal as a tumour-specific host immune response controls or clears the tumours after transmission and a period of growth. In contrast, the growth of DFTD tumours is not controlled by the Tasmanian devil's immune system and the disease causes close to 100% mortality, severely impacting the devil population. To avoid the immune response of the host both DFTD and CTVT use a variety of immune escape strategies that have similarities to many single organism tumours, including MHC loss and the expression of immunosuppressive cytokines. However, both tumours appear to have a complex interaction with the immune system of their respective host, which has evolved over the relatively long life of these tumours. The Tasmanian devil is struggling to survive with the burden of this disease and it is only with an understanding of how DFTD passes between individuals that a vaccine might be developed. Further, an understanding of how these tumours achieve natural transmissibility should provide insights into general mechanisms of immune escape that emerge during tumour evolution.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/imm.1237

    Measuring co-authorship and networking-adjusted scientific impact

    Get PDF
    Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors don't satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-authorship. Here, I define I1 for a single scientist as the number of authors who appear in at least I1 papers of the specific scientist. For a group of scientists or institution, In is defined as the number of authors who appear in at least In papers that bear the affiliation of the group or institution. I1 depends on the number of papers authored Np. The power exponent R of the relationship between I1 and Np categorizes scientists as solitary (R>2.5), nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or collaborators (R<1.75). R may be used to adjust for co-authorship networking the citation impact of a scientist. In similarly provides a simple measure of the effective networking size to adjust the citation impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics. Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure

    The edges of understanding

    Get PDF
    A culture's icons are a window onto its soul. Few would disagree that, in the culture of molecular biology that dominated much of the life sciences for the last third of the 20th century, the dominant icon was the double helix. In the present, post-modern, 'systems biology' era, however, it is, arguably, the hairball

    Mouse models for preeclampsia: disruption of redox-regulated signaling

    Get PDF
    The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD

    GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics

    Get PDF
    GOLPH2 is coding the 73-kDa type II Golgi membrane antigen GOLPH2/GP73. Upregulation of GOLPH2 mRNA has been recently reported in expression array analyses of prostate cancer. As GOLPH2 protein expression in prostate tissues is currently unknown, this study aimed at a comprehensive analysis of GOLPH2 protein in benign and malignant prostate lesions. Immunohistochemically detected GOLPH2 protein expression was compared with the basal cell marker p63 and the prostate cancer marker α-methylacyl-CoA racemase (AMACR) in 614 radical prostatectomy specimens. GOLPH2 exhibited a perinuclear Golgi-type staining pattern and was preferentially seen in prostatic gland epithelia. Using a semiquantitative staining intensity score, GOLPH2 expression was significantly higher in prostate cancer glands compared with normal glands (P<0.001). GOLPH2 protein was upregulated in 567 of 614 tumours (92.3%) and AMACR in 583 of 614 tumours (95%) (correlation coefficient 0.113, P=0.005). Importantly, GOLPH2 immunohistochemistry exhibited a lower level of intratumoral heterogeneity (25 vs 45%). Further, GOLPH2 upregulation was detected in 26 of 31 (84%) AMACR-negative prostate cancer cases. These data clearly suggest GOLPH2 as an additional ancillary positive marker for tissue-based diagnosis of prostate cancer

    Participation in environmental health research by placenta donation – a perception study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Much environmental health research depends on human volunteers participating with biological samples. The perception study explores why and how people participate in a placenta perfusion study in Copenhagen. The participation implies donation of the placenta after birth and some background information but no follow up.</p> <p>Methods</p> <p>Nineteen semi-structured qualitative interviews were conducted with participants in the placenta perfusion study after donation of placenta. Observation studies were made of recruitment sessions.</p> <p>Results</p> <p>The interviewed participants are generally in favour of medical research. They participated in the placenta perfusion study due to a belief that societal progress follows medical research. They also felt that participating was a way of giving something back to the Danish health care system. The participants have trust in medical science and scientists, but trust is something which needs to be created through "trust-work". Face-to-face interaction, written information material and informed consent forms play important parts in creating trusting relationships in medical research.</p> <p>Conclusion</p> <p>Medical research ethics do not only amount to specific types of written information material but should also be seen as a number of trust making performances involving researchers as well as research participants.</p

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc

    The formation of professional identity in medical students: considerations for educators

    Get PDF
    &lt;b&gt;Context&lt;/b&gt; Medical education is about more than acquiring an appropriate level of knowledge and developing relevant skills. To practice medicine students need to develop a professional identity – ways of being and relating in professional contexts.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Objectives&lt;/b&gt; This article conceptualises the processes underlying the formation and maintenance of medical students’ professional identity drawing on concepts from social psychology.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Implications&lt;/b&gt; A multi-dimensional model of identity and identity formation, along with the concepts of identity capital and multiple identities, are presented. The implications for educators are discussed.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Identity formation is mainly social and relational in nature. Educators, and the wider medical society, need to utilise and maximise the opportunities that exist in the various relational settings students experience. Education in its broadest sense is about the transformation of the self into new ways of thinking and relating. Helping students form, and successfully integrate their professional selves into their multiple identities, is a fundamental of medical education

    "Meaning" as a sociological concept: A review of the modeling, mapping, and simulation of the communication of knowledge and meaning

    Full text link
    The development of discursive knowledge presumes the communication of meaning as analytically different from the communication of information. Knowledge can then be considered as a meaning which makes a difference. Whereas the communication of information is studied in the information sciences and scientometrics, the communication of meaning has been central to Luhmann's attempts to make the theory of autopoiesis relevant for sociology. Analytical techniques such as semantic maps and the simulation of anticipatory systems enable us to operationalize the distinctions which Luhmann proposed as relevant to the elaboration of Husserl's "horizons of meaning" in empirical research: interactions among communications, the organization of meaning in instantiations, and the self-organization of interhuman communication in terms of symbolically generalized media such as truth, love, and power. Horizons of meaning, however, remain uncertain orders of expectations, and one should caution against reification from the meta-biological perspective of systems theory
    • …
    corecore