121 research outputs found

    The Accelerated Kepler Problem

    Full text link
    The accelerated Kepler problem is obtained by adding a constant acceleration to the classical two-body Kepler problem. This setting models the dynamics of a jet-sustaining accretion disk and its content of forming planets as the disk loses linear momentum through the asymmetric jet-counterjet system it powers. The dynamics of the accelerated Kepler problem is analyzed using physical as well as parabolic coordinates. The latter naturally separate the problem's Hamiltonian into two unidimensional Hamiltonians. In particular, we identify the origin of the secular resonance in the accelerated Kepler problem and determine analytically the radius of stability boundary of initially circular orbits that are of particular interest to the problem of radial migration in binary systems as well as to the truncation of accretion disks through stellar jet acceleration.Comment: 16 pages, 9 figures, in press at Celestial Mechanics and Dynamical Astronom

    Stages of steady diffusion growth of a gas bubble in strongly supersaturated gas-liquid solution

    Full text link
    Gas bubble growth as a result of diffusion flux of dissolved gas molecules from the surrounding supersaturated solution to the bubble surface is studied. The condition of the flux steadiness is revealed. A limitation from below on the bubble radius is considered. Its fulfillment guarantees the smallness of fluctuation influence on bubble growth and irreversibility of this process. Under the conditions of steadiness of diffusion flux three stages of bubble growth are marked out. With account for Laplace forces in the bubble intervals of bubble size change and time intervals of these stages are found. The trend of the third stage towards the self-similar regime of the bubble growth, when Laplace forces in the bubble are completely neglected, is described analytically.Comment: 22 page

    Vortices in superfluid trapped Fermi gases at zero temperature

    Full text link
    We discuss various aspects of the vortex state of a dilute superfluid atomic Fermi gas at T=0. The energy of the vortex in a trapped gas is calculated and we provide an expression for the thermodynamic critical rotation frequency of the trap for its formation. Furthermore, we propose a method to detect the presence of a vortex by calculating the effect of its associated velocity field on the collective mode spectrum of the gas

    Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second--post-Newtonian order

    Full text link
    Gravitational waves generated by inspiralling compact binaries are investigated to the second--post-Newtonian (2PN) approximation of general relativity. Using a recently developed 2PN-accurate wave generation formalism, we compute the gravitational waveform and associated energy loss rate from a binary system of point-masses moving on a quasi-circular orbit. The crucial new input is our computation of the 2PN-accurate ``source'' quadrupole moment of the binary. Tails in both the waveform and energy loss rate at infinity are explicitly computed. Gravitational radiation reaction effects on the orbital frequency and phase of the binary are deduced from the energy loss. In the limiting case of a very small mass ratio between the two bodies we recover the results obtained by black hole perturbation methods. We find that finite mass ratio effects are very significant as they increase the 2PN contribution to the phase by up to 52\%. The results of this paper should be of use when deciphering the signals observed by the future LIGO/VIRGO network of gravitational-wave detectors.Comment: 43 pages, LaTeX-ReVTeX, no figures

    Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly1

    Get PDF
    Configuration (x-)space renormalization of euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically regularized expression. Examples are given of computing residues that involve zeta values. The renormalized Green functions are again associate homogeneous distributions of the same degree that transform under indecomposable representations of the dilation group

    Relativistic superfluid models for rotating neutron stars

    Get PDF
    This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.Comment: 42 pages LateX. Contribution to Physics of Neutron Star Interiors, ed. D. Blasche, N.K. Glendenning, A. Sedrakian (ECT workshop, Trento, June 2000

    Homologs of genes and anonymous loci on human Chromosome 13 map to mouse Chromosomes 8 and 14

    Full text link
    To enhance the comparative map for human Chromosome (Chr) 13, we identified clones for human genes and anonymous loci that cross-hybridized with their mouse homologs and then used linkage crosses for mapping. Of the clones for four genes and twelve anonymous loci tested, cross-hybridization was found for six, COL4A1, COL4A2, D13S26, D13S35, F10, and PCCA. Strong evidence for homology was found for COL4A1, COL4A2, D13S26, D13S35, and F10, but only circumstantial homology evidence was obtained for PCCA. To genetically map these mouse homologs ( Cf10, Col4a1, Col4a2, D14H13S26, D8H13S35 , and Pcca-rs ), we used interspecific and intersubspecific mapping panels. D14H13S26 and Pcca-rs were located on the distal portion of mouse Chr 14 extending by ∼30 cM the conserved linkage between human Chr 13 and mouse Chr 14, assuming that Pcca-rs is the mouse homolog of PCCA. By contrast, Cf10, Col4a1, Col4a2 , and D8H13S35 mapped near the centromere of mouse Chr 8, defining a new conserved linkage. Finally, we identified either a closely linked sequence related to Col4a2 , or a recombination hot-spot between Col4a1 and Col4a2 that has been conserved in humans and mice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47022/1/335_2004_Article_BF00352413.pd
    corecore