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Abstract

Configuration (x-)space renormalization of euclidean Feynman ampli-
tudes in a massless quantum field theory is reduced to the study of lo-
cal extensions of associate homogeneous distributions. Primitively diver-
gent graphs are renormalized, in particular, by subtracting the residue
of an analytically regularized expression. Examples are given of comput-
ing residues that involve zeta values. The renormalized Green functions
are again associate homogeneous distributions of the same degree that
transform under indecomposable representations of the dilation group.
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1 Introduction

Fourier transform is a prime example of the now fashionable notion of duality.
It maps a problem of integrating large momenta into one of studying the short
distance behaviour of correlation functions. Divergences were first discovered
and renormalization theory was developed for momentum space integration.
E.C.G. Stueckelberg and A. Petermann [SP], followed by N.N. Bogolubov, a
mathematician who set himself to master quantum field theory (QFT), realized
that (perturbative) renormalization can be formulated as a problem of extending
products of distributions, originally defined for non-coinciding arguments2 and
that such extensions are naturally restricted by locality or micro-causality (a
concept introduced in QFT by Stueckelberg [Stu] and further developed by
Bogolubov and collaborators – for a review and references see [BS]). The idea
was taken up and implemented systematically by H. Epstein and V. Glaser [EG]
[EGS](see also parallel work by O. Steinmann [St]; for later contibutions and
surveys see [S82/93] [S06]). It is conceptually clear and represents a crucial step
in turning QFT renormalization into a mathematically respectable theory. By
the late 1990’s when the problem of developing perturbative QFT and operator
product expansions on a curved background became the order of the day, it was
realized that it is just the x-space approach that offers a way to its solution
[BF, BFV, DF, H07, H08, HW, HW08]. It is therefore not surprising that this
approach attracts more attention now than half a century ago when it was
originally conceived – see e.g. [G-B, G-BL, FG-B, EGP, FHS, K, N, K10, B].
Papers like [BBK] reflect, surely, later developments in both renormalization
theory (Kreimer’s Hopf algebra structure – see e.g. [Kr] – and Connes-Kreimer’s
reduction to the Riemann-Hilbert’s problem [CK]) and the mathematical study
of singularities in configuration space [FM, DP]. Recent work on Feynman
graphs and motives [BEK, BK] also generated a configuration space development
[Ni, N, CM].

A starting point in our work was the observation (cf. [BF], [HW], [G-B],
[DF]) that Hörmander’s treatment of the extension of homogeneous distributions
(Sect. 3.2 of [H]) is tailor-made for treating the ultraviolet (UV) renormaliza-
tion problem, that is particularly transparent in a massless QFT. In order to
explain the main ideas stripped of technicalities, we begin with the study of dila-
tion invariant euclidean Green’s functions (the only case considered in [BBK]).
Furthermore, we concentrate on the UV problem excluding integration in con-
figuration space by considering all vertices as external.The validity of the results
in the physically better motivated Minkowski space framework is established in
[NST]. It is, on the other hand, known that the leading UV singularities in a
massive QFT are given by the corresponding massless limit. The full study of
the renormalization problem in the massive case requires, however, additional
steps and is relegated to future work.

2Whereas x-space renormalization was straightened out in all generality [BP] [Step] [Hep],
it took some more time to settle the p-space problem [Z] [Zi] [L] [LZ], resulting in what is now
termed the BPHZ theory.
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We begin with a framework that differs from standard QFT (cf. [Ni]). We
separate the renormalization program from concrete (massless) QFT models
and state it as a mathematical problem of extension of a class of homogeneous
distributions. In Sect. 2 we formulate general axiomatic conditions for our
construction, such that when combined with a given Lagrangian model it repro-
duces the result of Epstein-Glaser for the renormalized time ordered products
(see [N]). To this end we introduce a universal algebra of rational translation in-
variant functions in R

Dn, where n runs in N while D, the space-time dimension,
is fixed (D = 4 being the case of chief interest). We assume that this algebra is
generated by 2-point functions of the type

Gij(xij) =
Pij(xij)

ρ
µij

ij

, xij = xi − xj , µij ∈ N ,

ρij = |xij | = (x2
ij)

1/2, x2 =

D∑

α=1

(xα)2 (1.1)

(for a Minkowski space signature ρ2 = x2 − (x0 − i0)2), x2 =
∑D−1

i=1 (xi)2);
here Pij are homogeneous polynomials in the components of the D-vector xij .
(For free massless fields in an odd dimensional spacetime the exponents µij are
odd3. For an even D one can assume that all µij are even integers so that
Gij are rational fumctions.) We note that the renormalization of any massless
QFT can be reduced to the extension of (a subspace of) rational functions G =∏
i<j

Gij(xij) of this algebra to distributions on R
D(n−1). The correspondence

between the rational functions and such distributions is called a renormalization
map. Each expression

GΓ =
∏

(ij)∈Γ

Gij(xij) , (1.2)

can be represented by a decorated graph Γ of n vertices and of lines connecting
pairs of different vertices (i, j) whenever there is a (non-constant) factor Gij in
the product (1.2). Each Gij = Gij(xij) appears at most once in this expression,
so that there are no multiple lines in the graph Γ. The presence of different
powers µ and different polynomials P indicates the fact that we give room for
composite fields in our theory such as normal products of derivatives of the basic
fields. (Matrix valued vertices that enter the Feynman rules can be accounted for
by admitting linear combinations of expressions of type (1.2).) A disconnected
graph Γ corresponds to the (tensor) product of the distributions associated to
its connected components. We shall restrict our attention to connected graphs.

We remark that a quantum field theorist may wish to replace the polynomial
in x in (1.1) by a polynomial of derivatives acting on the scalar field propagator.
The difference is not accidental: we shall impose the requirement, convenient
for the subsequent analysis, that the renormalization map commutes with mul-
tiplication by polynomials in xij . On the other hand, derivatives typically yield

3In view of recent interest in 3D CFT [GPY] [MZ] we explicitely include here odd D.
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anomalies independently of the above requirement (see [N], Sect. 8). Using the
renormalization map we achieve the basic property of the time–ordered prod-
uct: causality. Other constraints compatible with causality and power counting
may be imposed - including a description of possible associated anomalies – by
adjustment of additional finite renormalizations. An example of such a phe-
nomenon, concerned with the behaviour of renormalized Feynman amplitudes
under dilations, is considered in Sect. 4.

Thus, to any graph Γ in a given massless QFT there corresponds a bare
Feynman amplitude GΓ. It is a homogeneous rational function of degree −dΓ

which depends on n-1 D-vector differences. We shall denote the arguments of
GΓ by ~x, for short, and will introduce a uniform ordering x1, ..., xN of their com-
ponents, where N = D(n − 1) (for a connected graph). Then, the homogeneity
of GΓ is expressed as

GΓ(λ~x) = λ−dΓGΓ(~x) . (1.3)

We shall call the difference κ := dΓ − N the index of divergence. It coincides
with (minus) the degree of homogeneity of the density form

GΓ(~x) dx1 ∧ dx2 ∧ . . . ∧ dxN ≡ GΓ(~x) Vol. . (1.4)

(Whenever the orientation is not relevant we shall skip the wedge product sign.
The use of densities rather than functions streamlines changes of variables and
partial integration.) We say that GΓ is superficially divergent if κ ≥ 0;GΓ

is called divergent if it is not locally integrable. The following easy to prove
statement justifies the above terminology.

Proposition 1.1. If the indices of divergence of a connected graph Γ and of all
its connected subgraphs are negative then GΓ is locally integrable and admits, as
a consequence, a unique continuation as a distribution on R

D(n−1).

The power counting index of divergence of standard renormalization theory
is thus replaced by the degree of homogeneity of bare Green functions for a
(classically dilation invariant) massless QFT.

Abusing the terminology we shall also speak of (superficially) divergent
graphs. Each function GΓ defines a tempered distribution (in the sense of
Schwartz [Sc]) on test functions f with support

supp f ⊂ R
D(n−1)\∆2 , ∆2 = {~x ; ∃ (i, j) i < j, s.t. xij = 0} . (1.5)

One can, similarly, introduce the partial diagonals ∆k involving k-tuples of co-
inciding points; we have ∆n := {~x;x1 = . . . = xn} ⊂ ∆n−1 ⊂ . . . ⊂ ∆2. We
shall be mostly using the small or full diagonal ∆n in what follows. The problem
of renormalization consists in extending all distributions GΓ to S(RD(n−1)) in
such a way that a certain recursion relation, which reflects the causality condi-
tion, is satisfied. This condition is known as causal factorization. We give the
precise formulation of its euclidean version in Sect. 2 that follows from the more
involved but physically motivated Minkowski space requirement (see [NST]).
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We use an x-space counterpart of Speer’s analytic renormalization in [Sp] to
define the notion of residue4 of GΓ adapted, in particular, to primitively diver-
gent graphs. It is based on the observation that if r = r(xij) is a norm in the
(euclidean) space of coordinate differences and G(~x) is primitively divergent of
index κ then the analytically regularized Feynman amplitude

rκ+ǫG(~x) (ǫ > 0) (1.6)

is locally integrable. It will be proven in Sect. 2 and Appendix A that Eq.
(1.6) defines a distribution valued meromorphic function in ǫ which only has
simple poles for non-positive integer values of ǫ. This will allow us to define
the renormalized Feynman distribution GR of a primitively divergent graph by
just subtracting the pole term for ǫ = 0. The result will be enforced by one
of our main requirements (see (MC2) of Sect. 2, below), namely that GR is
associate homogeneous of the same degree as G (its behaviour for small r only
differing from G by log terms). More precisely, we say that G is an associate
homogeneous distribution of degree d and order k if it obeys the (infinitesimal)
indecomposable dilation law

(E + d)k+1G(~x) = 0 where E =

n∑

i=1

xi
∂

∂xi
(x

∂

∂x
=

D∑

α=1

xα ∂

∂xα
) , (1.7)

– i.e., if it is an associate eigenvector of the Euler operator E – see [GS].

The study of divergent graphs with subdivergences is outlined in Sect. 4,
where a global characterization of associate homogeneous distributions is also
given. It is remarkable that in all cases renormalization is reduced to a 1-
dimensional extension problem for associate homogeneous distributions. A con-
struction that provides the solution to this problem is outlined in Appendix A.

One objective of our work is to demonstrate in a systematic fashion that
x-space calculations are not only more transparent conceptually but also prac-
tical (especially in the euclidean massless case – something noticed long ago by
Chetyrkin et al. [CKT] (see also [KTV]) but only rarely appreciated afterwards
– cf. [G-B]). To this end we consider (in Sects. 3, 4) a number of examples
(of 1-, 2- and 3-loop graphs) displaying the basic simplicity of the argument. A
primitively divergent n-loop graph whose residue involves ζ(2n−3) is displayed
as Example 3.2.

4A notion of residue of a Feynman graph has been introduced in the momentum space
approach in terms of the graph polynomial [BEK, BK]. It would be interesting to establish the
precise relationship between that notion and ours. The notion of Poincaré residue considered
in [CM], on the other hand, works in a straightforward manner for simple poles in x-space, a
rather unnatural restriction for ultraviolet divergences.
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2 General requirements. Reduction to a one-

dimensional problem

We shall define ultraviolet (i.e. short distance) renormalization by induction
with respect to the number of vertices. Assume that all contributions of dia-
grams with less than n points are renormalized. If then Γ is an arbitrary con-
nected n-point graph its renormalized contribution should satisfy the following
inductive factorization requirement.

Let the index set I(n) = {1, . . . , n} of Γ be split into any two non-empty
non-intersecting subsets

I(n) = I1∪̇ I2 (I1 6= ∅ , I2 6= ∅ , I1 ∩ I2 = ∅) .

Let UI1,I2
be the open subset of R

Dn ≡ (RD)×n such that (x1, . . . , xn) /∈ UI1,I2

whenever there is a pair (i, j) such that i ∈ I1, j ∈ I2. Let further GR
1 and GR

2 be
the contributions of the subgraphs of Γ with vertices in I1 and I2, respectively.
For each such splitting our distribution GR

Γ , defined on all partial diagonals,
exhibits the euclidean factorization property (– see [Ni]):

GR
Γ = GR

1



∏

i∈I1
j∈I2

Gij


GR

2 on UI1,I2
, (2.1)

where Gij are factors (of type (1.1)) in the rational function GΓ and are under-
stood as multipliers on UI1,I2

. This property is inspired by the Minkowski space
causal factorization of Epstein-Glaser [EG] considered in [NST].

We shall add to this basic physical requirement a few more mathematical
conventions (MC) which will substantially restrict the notion of renormalization
used in this paper.

(MC1) The renormalization commutes with permutation of indices (which
may stand for both position variables and discrete quantum numbers).

(MC2) Renormalization maps rational homogeneous functions onto associate
homogeneous distributions of the same degree of homogeneity; it extends asso-
ciate homogeneous distributions defined off the small diagonal to associate ho-
mogeneous distributions of the same degree (but possibly of higher order) defined
everywhere on R

N .

(MC3) The renormalization map commutes with multiplication by (homoge-
neous) polynomials. If we extend the class of our distributions allowing mul-
tiplication with smooth functions of no more than polynomial growth (in the
domain of definition of the corresponding functionals), then this requirement
will imply commutativity of the renormalization map with such multipliers.

(MC4) In a euclidean invariant theory the renormalization map commutes
with euclidean transformation in R

D.

The induction is based on the following euclidean diagonal lemma.
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Proposition 2.1. The complement C(∆n) of the small diagonal is the union
of all UI1,I2

for all pairs of disjoint I1, I2 with I1∪̇ I2 = {1, . . . , n}, i.e.,

C(∆n) =
⋃

I1∪̇I2 = {1,...,n}

UI1,I2
.

Proof. Let (x1, . . . , xn) ∈ C(∆n). Then there are at least two different points
xi1 6= xj1 . We define I1 as the set of all indices i of I = I(n) for which xi 6= xj1

and I2 := I\I1. Hence, C(∆n) is included in the union of all such pairs. Each
UI1,I2

, on the other hand, is defined to belong to C(∆n). This completes the
proof of our statement.

In order to apply and implement the inductive factorization property (2.1)
one needs two steps:

(i) to renormalize all primitively divergent graphs, i.e. all divergent diagrams
with no proper subdivergences, in particular, to extend all (superficially)
divergent 2-point functions Gij to distributions on S(RD);

(ii) to extend the resulting associate homogeneous distributions defined on the
complement of the full diagonal x1 = x2 = . . . = xn to distributions on
S(RD(n−1)).

We shall only elaborate on the first step in this exposé. Concerning step (ii),
briefly reviewed in Sect. 4, we refer to our paper [NST].

A primitively divergent graph gives rise to a homogeneous distribution G0(~x)
defined on R

N\{0} (i.e. off the small diagonal, as ~x is expressed in terms of
the coordinate differences). The following statement concerns more generally
associate homogeneous distributions and thus applies to any graph with renor-
malized subdivergences.

Theorem 2.2. Let Σ be any cone section – i.e., a smooth (compact) hypersur-
face in R

N\{0} that intersects transversally every ray {λ~x}λ>0 (~x 6= 0) and let
ρΣ(~x) be a positive smooth function such that ~u := ρ(~x)−1 ~x ∈ Σ. Then every
associate homogeneous distribution of degree −d and order n has an expansion
of the form5

G0(r~u) =

n∑

m=0

GΣ
m(~u) L−dm(r) , r = ρΣ(~x) , (2.2)

Lam(r) = θ(r) ra (ℓn r)m

m!

(
= ra (ℓn r)m

m!
for r > 0

)
. (2.3)

5A similar decomposition in an overall scale and angle variables is derived and used very
recently in momentum space in [BKr].

7



The proof uses induction in n, based on the formula

(E + d) L−dn = L−dn−1 for E = ~x
∂

∂~x
, n = 1, 2, . . . , (2.4)

along with the observation that for n = 0

∂

∂r

(
rd G0(r~u)

)
= 0 .

Thus the renormalization problem is reduced to the extension of 1-dimensio-
nal distributions of type (2.3). The latter is achieved by exploiting the simple
pole structure of analytic regularization [Sp] and the resulting generating for-
mula (see Appendix):

θ(r) rǫ−κ−1 − (−1)κ

κ!ǫ
δ(κ)(r) =

∞∑

κ=0

L−κ−1n(r) ǫn . (2.5)

The distributions L−dn can be then defined on the real line using (MC3)
and (2.4); they depend on a single scale parameter hidden in the argument of
the logarithm (see Appendix).

The following proposition may serve as a definition of both the notion of a
residue Res and of a primary renormalization map PΣ

N : S ′(RN\{0}) → S ′(RN ).

Theorem 2.3. If G0(~x) is a homogeneous distribution of degree −d on R
N\{0}

(d = N + κ ≥ N), then

ρΣ(~x)ǫ G0(~x) − 1

ǫ
(Res G)(~x) = GΣ(~x) + 0(ǫ) (GΣ = PΣ

N G0) ; (2.6)

here Res G is a distribution with support at the origin whose calculation is re-
duced to the case d = N of a logarithmically divergent graph by using the identity

Res G =
(−1)κ

κ!
∂i1 . . . ∂iκ

(Res(xi1 . . . xiκ G))(~x) (2.7)

where summation is understood over all repeated indices i1, . . . , iκ from 1 to N .
If G0(~x) is homogeneous of degree −N then

Res G(~x) = (res G0) δ(~x) (for (E + N) G0(~x) = 0) (2.8)

where

res G0 =

∫

Σ

G0(~x)

N∑

j=1

(−1)j−1 xj dx1 ∧ . . . dx̂j . . . ∧ dxN (2.9)

is independent of Σ since the form under the integral sign is closed. (A hat, ,̂
over an argument means, as usual, that this argument is omitted.)

Proof. The fact that the distribution valued function of ǫ ρǫ
Σ G0 is meromorphic

and only has a simple pole at ǫ = 0 follows from Theorem 2.2 and Eq. (2.5).
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Eq. (2.7) follows from the assumed homogeneity property ∂i xi G0 = −κ G0 of
G0. The integrand in (2.9) is a contraction of G0 Vol with the Euler vector field:

iE G0 Vol =

N∑

j=1

G0(−1)j xj dx1 ∧ . . . dx̂j . . . ∧ dxN (2.10)

and it is a (homogeneous) form of maximal degree in the (N − 1)-dimensional
projective space for λN G0(λ~x) = G0(~x).

The residue (2.9) is a special case of the so called Wodzicki residue (see [G-B]
[G-BVF] and references therein).
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3 Residues and renormalization of primitively

divergent graphs

For the (euclidean covariant) 2-point function in a D-dimensional space-time
N = D (~x = x = x1 − x2) it is natural to choose for Σ the unit hypersphere

S
D−1, so that ρΣ(x) =

√
x2 =: r. For a scalar 2-point function of a composite

field of dimension D
2 (D-even), we would have

G0(x) =
C

(x2)D/2
, Res G = C |SD−1| δ(x) (3.1)

where |S2m−1| = 2 πm

(m−1)! .

The renormalization map RΣ
D : G0 → GΣ (2.6) can be computed explicitly

in terms of the radial coordinate r of Eq. (2.5) (see Appendix).

Here we shall compute it instead in Cartesian coordinates in two examples
of 4-dimensional (4D) scalar field theory.

Example 3.1. The logarithmically divergent 2-point graph shown on Fig. 1a

Figure 1.

Logarithmically and quadratically divergent 2-point graphs.

is ubiquitous as a (sub)divergence in any scalar field theory in 4D: it appears
as a self-energy graph in a ϕ3 model and as a contribution to the 4-particle
scattering amplitude in the ϕ4 theory. The limit ǫ → 0 in (2.6) for this 1-loop
graph reads

G1(x, ℓ) = lim
ε→0

[
1

(x2)2

(
x2

ℓ2

)ε

− 2 π2

2ε
δ(x)

]

=
1

2

∂

∂xα

[
xα

(x2)2
ℓn

(
x2

ℓ2

)](
=

1

r2

∂

∂r2

(
ℓn

r2

ℓ2

)

+

,

(ℓn ρ)+ =

{
ℓn ρ for ρ > 0
0 for ρ < 0

)
. (3.2)

This is another instance of differential renormalization (cf. Eq. (A.4) and

see [FJL], [HL], [Pr]). Renormalized expressions of the type ∂
∂xα

[
xα

(x2)2 ℓn x2

ℓ2

]

(sum over α) are used systematically in [G-B].

Remark 3.1. Note that the double and the triple lines in Fig. 1 should both
be viewed as a single line with a different decoration (corresponding to different
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powers, µ = 2 and µ = 3, in (1.1)). Thus, the self-energy graph on Fig. 1b,
which displays overlapping divergences in momentum space, is primitively di-
vergent in x-space according to our definition. Its renormalized expression is
additionally restricted by the requirement of full euclidean invariance. (In gen-
eral, we require the presence of as much of the symmetry of the rational function
in the renormalized expression as allowed by the existing anomalies.) Apply-
ing further requirement (MC3) which yields the identity G1(x, ℓ) = x2 G2(x, ℓ),
valid for the original rational functions away from the origin, we find

G2(x, ℓ) = lim
ε→0

{
1

(x2)3

(
x2

ℓ2

)ε

− π2

8 ε
∆δ(x)

}

=
3 π2

16
∆δ(x) +

∆

8
G1(x, ℓ) . (3.3)

In deriving (3.3) we have used the identities

∆f = 4
∂2

∂ρ2
(ρf) +

1

ρ
∆ω f for ρ = x2(= r2) , x = rω ;

1

ρn+1

( ρ

ℓ2

)ε

=
1

(n − ε)(n − 1 − ε)2 . . . (1 − ε)2(−ε)

(
∂2

∂ρ2
ρ

)n
1

ρ

( ρ

ℓ2

)ε

=
1

n!(n − 1)!

(
∆

4

)n−1(
π2

ε
δ(x) + π2 sn δ(x) + G1(x, ℓ)

)
+ O(ε) ,

where sn is a sum of partial harmonic series (cf. (A.5)):

sn =

n−1∑

j=1

1

j
+

n∑

j=2

1

j

(
s1 = 0 , s2 =

3

2
, s3 =

7

3
, . . .

)
.

One can use a more general (homogeneous, O(D)-invariant) norm on the
distances x2

ij instead of the (O(N)-invariant) radial coordinate for N = D(n−1)
in order to compute both the residue and the renormalized expression of a
primitively divergent graph as illustrated on the following n-loop example.

Example 3.2. We consider the 4D n-loop (n + 1-point) primitively divergent
Feynman amplitude

Gn = (

n∏

i=1

x2
0ix

2
ii+1)

−1, xn+1 ≡ x1, (3.4)

which we shall parametrize by the spherical coordinates of the n independent
4-vectors x0i:

x0i = ri ωi , ri ≥ 0 , ω2
i = 1 , i = 1, 2, ..., n. (3.5)

An important special case is given by the complete 4-point graph on Fig. 2

11



G3 =
1

x2
01 x2

02 x2
03 x2

12 x2
23 x2

13

Figure 2.

The tetrahedron graph in the (ϕ4)4-theory.

Setting6

Gε
n =

(
R2

ℓ2

)ε

Gn, R = max(r1, ..., rn), (3.6)

we shall compute its residue by first integrating the corresponding analytically
regularized density Gε

nVol over the angles ωi using the identification of the
propagators 1

x2
ij

with the generating functions for the Gegenbauer polynomials.

Having in mind applications to a scalar field theory in D dimensions (see Ex-
ample 4.2 below) we shall write down the corresponding more general formulas.
The propagator (x2

12)
−λ of a free massless scalar field in D = 2λ+2 dimensional

space-time is expanded as follows in (hyperspherical) Gegenbauer polynomials:

(x2
ij)

−λ = (r2
i + r2

j − 2rirjωiωj)
−λ =

1

R2λ
ij

∞∑

n=0

(
rij

Rij

)n

Cλ
n(ωi ωj) ,

Rij = max(ri, rj) , rij = min(ri, rj) , i 6= j , i, j = 1, 2, 3. (3.7)

We shall also use the integral formula

∫

S2λ+1

dω Cλ
m(ω1 ω) Cλ

n(ω2 ω) =
λ|S2λ+1|
n + λ

δmn Cλ
n(ω1 ω2) , (3.8)

where |S2λ+1| = 2 πλ+1

Γ(λ+1) is the volume of the unit hypersphere in D = 2λ + 2

dimensions.

Clearly, the expansion (3.7) requires an ordering of the lengths ri. In general,
one should consider separately n! sectors, obtained from one of them, say

r1 ≥ r2 ≥ ... ≥ rn (≥ 0) (3.9)

by permutations of the indices. It is, in fact, sufficient to consider just the sector
(3.9) (and multiply the result for the residue by n!). (Because of the symmetry

6The fact that the maximum function R, which replaces ρΣ(~x) of Theorem 2.2, does not
depend smoothly on the coordinates, requires, in general, a special treatment of the lower
dimensional manifolds of discontinuities of its derivatives. (See Example 4.1 below.)
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of the tetrahedron graph (Fig. 2) this is obvious for n = 3 but it is actually true
for any n(≥ 3).) The result involves a polylogarithmic function:

G̃ε
n :=

∫

S3

...

∫

S3

Gε
n(r1 ω1, ..., rn ωn) Vol

= (2π2)n
(r1

ℓ

)2ε dr1 ∧ ... ∧ drn

r1 ...rn
Lin−2(

r2
n

r2
1

),

Lin−2(ξ) =

∞∑

m=1

1

mn−2
ξm (ξ =

r2
n

r2
1

) (3.10)

(rn = min(r1, ..., rn), r1 = max(r1, ..., rn)(= R) ). To derive the last equation
we have applied once more (3.8) and used

(
C1

m(ω2
1) =

)
C1

m(1) = m + 1.

The residue distribution corresponding to the (integrated over the angles) den-
sity (3.10) is given by

Res G̃ε
n = res G0

n δ(r1)...δ(rn) dr1 ∧ ... ∧ drn (3.11)

where

res G0
n = n! lim

ε→0
2ε

∫ ∞

r1=0

∫ r1

r2=0

...

∫ rn−1

rn=0

G̃ε
n = n! (2π2)n

∫

Kn−1

...

∫
ω ,

ω := Lin−2(ξ)
r1 dr2 ∧ ... ∧ drn − r2 dr1 ∧ dr3... ∧ drn + ...(−1)n−1rn dr1 ∧ ... ∧ drn−1

r1 ...rn

(dω = 0) . (3.12)

Here ω is a closed homogeneous form on the compact projective cone

Kn−1 =

{
(r1, ..., rn) ∈ Pn−1 ; ri ≥ 0

(
n∑

i=1

ri > 0

)}
. (3.13)

The integration in (3.12) may be performed over any transverse surface. Choos-
ing R(= r1) = 1 we find

res G0
n = n! (2π2)n

∫ 1

0

dr2

r2
...

∫ rn−1

0

drn

rn
Lin−2(r

2
n)

= n! 2π2n ζ(2n − 3) . (3.14)

In particular, for the tetrahedron graph, n = 3, we reproduce the known result,
res G0

3 = 12π6ζ(3) - see, for instance, [G-B].

The integration technique based on the properties of Gegenbauer polynomi-
als has been introduced in the study of x-space Feynman integrals in [CKT].
The appearance of ζ-values in similar computations has been detected in early
work of Rosner [R] and Usyukina [U]. It was related to the non-trivial topology
of graphs by Broadhurst and Kreimer [BrK], [Kr].
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4 Dilation anomaly. Examples of graphs with

subdivergences

We now turn to the behaviour under dilations of a renormalized primitively
divergent density G(~x)Vol of index κ (≥ 0). By the definition of G Vol the
dilation anomaly

A(~x, λ) := λκ G(λ~x) Vol − G(~x) Vol (4.1)

is a distribution valued density with support at the small diagonal, x1 = x2 =
... = xn. Invoking the requirement (MC2), we can restrict it, following [H], by
demanding that it is again homogeneous in ~x of degree −κ:

A(~x, λ) =
∑

α,|α|=κ

aα(λ) Dα δ(~x)

n−1∏

i=1

dD xin (4.2)

where δ(~x) is the D(n − 1)-dimensional δ-function,

Dα =

n−1∏

i=1

D∏

ν=1

(∂ν
i )αiν , |α| =

∑

i,ν

αiν .

Repeated application of the dilation law (4.1) yields the cocycle condition7

aα(λµ) = aα(λ) + aα(µ) . (4.3)

The general form of aα satisfying (4.3) is

aα(λ) = aα(G) ℓn λ (4.4)

where aα(G) is a linear functional of the Green function G (or the corresponding
density GVol). It is important to note that the coefficient aα(G) in (4.4) is inde-
pendent of the ambiguity in the definition of the renormalized Green function.
Once the problem of renormalizing a primitively divergent graph is reduced to
a 1-dimensional one (as in Sect. 2) this follows from the simple observation that
the coefficient of ℓn r in (A.5) is independent of the ambiguity reflected in the
scale parameter ℓ (and of the transverse hypersurface Σ that enters (2.9)).

In fact, each renormalization of a subdivergence in a given graph increases by
one the order - i.e. the maximal power of ℓn λ in the associate homogeneity law.
Since r ∂

∂r (ℓn r)j = j(ℓn r)j−1, a general associate homogeneous renormalized
Feynman amplitude G will satisfy Eq. (1.7), (E + d)k+1 G(~x) = 0. We can then
characterize G by a (column) vector G = (G0 = G, G1 = (E + d) G0, . . . , Gk =
(E + d) Gk−1) of distributions. It carries an indecomposable representation of
the dilation group8 of degree −d and order k such that

G(~x) → λd
G(λ~x) = e∆ℓnλ

G(~x) =

k∑

j=0

(ℓn λ)j

j!
Gj(~x) (4.5)

7Usually, in perturbation theory one is dealing with Lie algebra cohomology. Group coho-
mology has occurred in various contexts in the early 1980’s [S82/93] [F].

8Representations of this type have been considered back in the 1970’s [FGG] within a study
of a spontaneous breaking of dilation symmetry.
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where ∆ is a nilpotent Jordan cell with k units above the diagonal. The nilpo-
tency condition ∆k+1 = 0 remains invariant under an arbitrary non-singular
transformation G → SG,∆ → S−1∆S. One usually only uses this freedom to
change the relative normalization of Gj .

It follows from the factorization property (2.1) that the dimension of the
support of Gj is decreasing with j and

Gk(~x) = (~x ~∂ + d) G0(~x) =
∑

α

aα(G) Dα δ(x) . (4.6)

Following the terminology of Gelfand-Shilov [GS] we call both G and its com-
ponents associate homogeneous distributions (cf. (1.7)).

The following simple example of a graph with a subdivergence illustrate the
complication (mentioned in connection with Eq. (3.6)) coming from the use of
a non-smooth radial coordinate.

Example 4.1. Renormalization the 3-point two loop diagram displayed on
Fig. 3.

G∆ =
1

x2
01 x2

12 [x2
02]

2
.

Figure 3.

Logarithmically divergent 3-point graph with a 2-point subdivergence.

We introduce as independent variables the spherical coordinates of the vec-
tors x0i, i = 1, 2

x01 = rω1 , x02 = ρ ω2 , r, ρ ≥ 0 , ω2
i = 1 (i.e. ωi ∈ S

3) i = 1, 2 (4.7)

and set
ω1 · ω2 = cos ϑ , x2

12 = r2 + ρ2 − 2r ρ cos ϑ . (4.8)

The renormalized 2-point Green function (3.2), corresponding to the subgraph
of vertices (0, 2) is

G1(x02, ℓ) =
1

2

∂

∂ xα
02

[
xα

02

(x2
02)

2
ℓn

x2
02

ℓ2

]

+

=
1

ρ3

∂

∂ρ

(
ℓn

ρ

ℓ

)

+
. (4.9)

(The last expression only makes sense as a density after multiplying with the
volume element d4x = ρ3 dρ d3ω that cancels the 1

ρ3 factor and permits to

transfer the derivative to the test function.)
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Next we shall write down the density G∆Vol with renormalized subdiver-
gence integrated over the six angular variables ω1 and ω2

G∆ Vol :=

[∫
d3ω1

∫
d3ω2 G∆(rω1, ρ ω2; ℓ)

]
r3 dr ρ3dρ

= 8π3

∫ π

0

sin2 ϑ dϑ

r2 + ρ2 − 2rρ cos ϑ

∂

∂ρ

(
ℓn

ρ

ℓ

)

+
r dr dρ (4.10)

= 4π4 r dr dρ

r2
∨

∂

∂ρ

(
ℓn

ρ

ℓ

)

+
, r∨ = max(r, ρ) =

r + ρ + |r − ρ|
2

.

Smearing G∆Vol with a test function f(r, ρ) we find that the leading term,
LT G∆Vol, for r∨ → 0 (the only one that requires overall renormalization)
corresponds to r = ρ

(LT GR
∆ Vol, f) = −4 π4

∫ ∞

0

dr
ℓn2

(
r
ℓ

)

2

d

dr
f(r, r) . (4.11)

Here we have made use of the renormalized associate homogeneous distribution
L−11(r) thus illustrating Theorem 2.2.

Somewhat symbolically we can write

GR
∆(r, ρ; ℓ) Vol = 4π4 L−11

(r

ℓ

)
δ(ρ−r)

dr

ℓ
dρ+G0(r, ρ) Vol L01

(ρ

ℓ

)
dρ (4.12)

where G0Vol is the regular part of the homogeneous 1-form 4π4 r dr
r2
∨

(for ρ 6= r).

Displaying the associate homogeneity law for the renormalized density (4.12)
we observe a manifestation of the general rule: only the coefficient of the highest
log term (ℓn λ for L01 dρ and (ℓn λ)2 for L−11 dr) is independent of the ambiguity
parametrized here by the scale ℓ in the renormalized subdivergence.

Remark 4.1. One could be tempted to replace the renormalization parameter
ℓ in the expression (4.10) by the (external to the divergent 2-point subgraph)
variable r for r > ρ. This would amount to subtracting a local in ρ term,
4 π4 dr

r ℓn r
ℓ δ(ρ) dρ. It is straightforward to observe, however, that neglecting

such a term in (4.10) would violate the causal factorization requirement (2.1).

The techniques developed in Example 4.1 also apply to more complicated
graphs (cf. Example 3.2 in [NST]).

Example 4.2. As a last example we consider the graph displayed on Fig. 4
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x0j = rj ωj , rj ≥ 0 , ωj ∈ S
5

GO = (r2
1 r2

2 r2
3 x2

12 x2
23)

−2

Figure 4.

Quadratically divergent diagram in 6-dimensions.

which exhibits overlapping divergences in 6-dimensional space-time.

Applying the relations (3.7) (3.8) for λ = 2, we find the following expres-
sion for the analytically regularized integrated with respect to the angles Green
function density

G̃ε1 ε2

O
= π9 r1 r2 r3

(R12 R23)4

(
R2

12

ℓ21

)ε1
(

R2
23

ℓ22

)ε2

dr1 dr2 dr3 , (4.13)

where Rij = max(ri, rj) (cf. (3.7)). The renormalized expression for GO again
depends, as in the preceding examples (see, in particular, Example 3.2) on the
inequalities satisfied by the radial variables. For

r1 < r2 < r3 (4.14)

(and, similarly, for r3 < r2 < r1) we have a case of nested singularities. One
first renormalizes the logarithmicly divergent triangular subgraph with vertices
(0, 1, 2). Integrating first with respect to r1 in the domain (4.14) we find

lim
ε1→0

(∫ r2

0

G̃ε1 ε2

O
− π9

4 ε1
δ(r2)

(
r3

ℓ2

)2ε2 dr2 dr3

r3
3

)

=
π9

2
d

(
ℓn

r2

ℓ1

)(
r3

ℓ2

)2ε2 dr3

r3
3

. (4.15)

The renormalization of the resulting quadratically divergent in r3 associate ho-
mogeneous distribution follows the lines of Example 4.1. The case r1 < r2 > r3,
in which R12 = R23 = r2 and “the divergences overlap”, is actually simpler; it
is reduced to a single radial renormalization. Setting ε1 + ε2 = ε

2 and ℓ1 ℓ2 = ℓ2

and integrating in r1 and r3, we find

lim
ε→0

(∫ r2

r1=0

∫ r2

r3=0

Gε
O − π9

8

δ′′(r2)

2 ε
dr2

)
=

π9

8

(
d3

dr3
ℓn

r

ℓ
+

3

2
δ′′(r)

)
. (4.16)

5 Concluding remarks

The work [NST], surveyed here, is concerned with a mathematical reformulation
of the poblem of ultraviolet renormalization of massless QFT. The extension
of rational homogeneous functions to associate homogeneous distributions of
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the same degree obeying (euclidean) factorization, considered here, only partly
resolves the physical problem (see [N]). It does not consider integration over
internal vertices in concrete Lagrangian theories (like ϕ4) and so does not control
the corresponding adiabatic limit (which is separated in standard approaches
from the study of on shell infrared singularities9).

The present survey is only confined to the part of [NST] dealing with the
euclidean picture. The reader willing to understand the physical origin of the
causal factorization and the way one goes around the light cone singularities
should consult the original paper.
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tation and the IHÉS and the Theory Division at CERN for hospitality during
the course of this work.

Appendix A. Radial associate homogeneous dis-

tributions

The study of radial homogeneous distributions is based on the observation ([H]
Sect. 3.2) that the family of distributions (“devided powers”)

χa(r) :=
(ra)+

Γ(a + 1)
, a 6= −1,−2, . . . ((ra)+ ≡ θ(r) ra) (A.1)

is uniquely extendable to a distribution valued entire analytic function in a.
The property Γ(a + 1) = aΓ(a) gives

d

dr
χa(r) = χa−1(r) (r χa(r) = (a + 1)χa+1(r)) . (A.2)

Combined with χ0(r) = θ(r) the (Heaviside) characteristic function of the po-
sitive semiaxis – we find

χ−κ−1(r) = δ(κ)(r) , κ = 0, 1, . . .

(∫
δ(κ)(r) f(r) dr = (−1)κ f (κ)(0)

)
.

(A.3)
From the known pole structure of Γ(a) we deduce the formula (2.5) for the
generating function of L−κ−1n. The distributions L−κ−1n can be defined in
terms of differential renormalization [FJL]:

L−κ−1n(r) = lim
ǫ→0

1

n!

∂n

∂ǫn

(
θ(r) rǫ−κ−1 − δ(κ)(−r)

ǫκ!

)

=
(−1)κ

κ!

(
d

dr

)κ+1 n+1∑

m=0

σκm L0n+1−m , (A.4)

9We thank Detlev Buchholz for stressing this point to us.
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where L0ν(r) = θ(r) (ℓn r)ν

ν! are (integrable) powers of logarithms and the con-
stants σκm are given by

σκ0 = 1 , σ0m = 0 for m = 1, . . . , n + 1 ,

σκm = σκ−1m +
σκm−1

κ
=

∑

1≤j1≤...≤jm≤κ

1

j1 . . . jm
. (A.5)

The freedom in the extension of the rational homogeneous function r−k from
the positive semiaxis to an associate homogeneous distribution on R is hidden
in the scale of log r. In fact, the general associate homogeneous distribution
that coincides with r−κ−1 for r > 0 involves a single scale parameter ℓ:

ℓ−κ−1L−κ−1,0

(r

ℓ

)
=

(−1)κ

κ!





dκ+1

drκ+1

(
θ(r) ℓn

r

ℓ

)
+

κ∑

j=1

1

j
δ(κ) (r)





= L−κ−1,0(r) − ℓn ℓ
δ(κ)(−r)

κ!
. (A.6)

Once ℓ is fixed, say ℓ = 1, all distributions Lkn(r) (k ∈ Z, n = 0, 1, . . .) are
uniquely determined.

Proposition A.1. The distributions Lkn(r), given for negative integer k by
(A.4), satisfy

(i) Lkn(r) = θ(r) rk (ℓn r)n

n! for r 6= 0;

(ii) (E − k) Lkn(r) = Lkn−1(r) for n = 1, 2, . . ., (E − k) Lk0(r) = 0;

(iii) r Lkn(r) = Lk+1n(r).

Conversely, the properties (i) and (ii) determine uniquely the system of distri-
butions Lkn.

Proof. Properties (i)–(iii) follow from the corresponding properties of θ(r) rǫ+k

(and from Eq. (2.5)). To prove the uniqueness, assume that there are two sets of
associate homogeneous distributions Lkn and L′

kn satisfying (i) and (ii). Then
their differences Dkn := Lkn − L′

kn would satisfy Dkn = 0 for k ≥ 0 and
D−κ−1n(r) = Cκn δ(κ)(r) for κ, n = 0, 1, . . .. It then follows from (ii) that

0 = (E + κ + 1)Cκn+1 δ(κ)(r) = Cκn δ(κ)(r) ,

hence Cκn = 0 for all n ≥ 0.
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[H] L. Hörmander, The Analysis of Linear Partial Differential Operators, I.
Distribution Theory and Fourier Analysis, 2d edition, Springer, Berlin
1990 (see, in particular, Sect. 3.2 and Chapter VIII).

[K] K.J. Keller, Euclidean Epstein-Glaser renormalization, J. Math. Phys.
50 (2009) 103503; arXiv:0902.4789 [math-ph].

22



[K10] K.J. Keller, Dimensional regularization in position space and a forest
formula for regularized Epstein-Glaser renormalization, arXiv:1006.2148
[math-ph].

[Kr] D. Kreimer, Knots and Feynman Diagrams, Cambridge Lecture Notes in
Physics 13, Cambridge Univ. Press, Cambridge 2000.

[KTV] A.N. Kuznetsov, F.V. Tkachov, V.V. Vlasov, Techniques of distributions
in perturbative quantum field theory I, hep-th/9612037.

[L] [10] Y. M. Lam, Equivalence theorem on Bogolyubov-Parasiuk-Hepp-
Zimmermann renormalized Lagrangian field theories, Phys. Rev. D7

(1973) 2943.

[LZ] J.H. Lowenstein, W. Zimmermann, On the formulation of theories with
zero-mass propagators, Nuclear Phys. B86 (1975) 77-103.

[MZ] J. Maldacena, A. Zhiboedov, Constraining conformal field theories with
higher spin symmetry, arXiv:1112.1016 [hep-th].

[Ni] N.M. Nikolov, Anomalies in quantum field theory and cohomologies
in configuration spaces, arXiv:0903.0187 [math-ph]; Talk on anomaly
in quantum field theory and cohomologies of configuration spaces,
arXiv:0907.3735 [hep-th].

[N] N.M. Nikolov, Renormalization theory of Feynman amplitudes on con-
figuration space, arXiv:0907.3734 [hep-th].

[NST] N.M. Nikolov, R. Stora, I. Todorov, Configuration space renormaliza-
tion of massless QFT as an extension problem for associate homoge-
neous distributions, Bures-sur-Yvette preprint IHES/P/11/07 and work
in progress.

[Pr] D. Prange, Causal perturbation theory and differential renormalization,
J. Phys. A32 (1999) 2225-2238; hep-th/9710225.

[R] J. Rosner, Sixth order contribution to Z3 in finite quantum electrody-
namics, Phys. Rev. Letters 17:23 (1966) 1190-1192; Higher order contri-
butions to the divergent part of Z3 in a model quantum electrodynamics,
Ann. of Physics 44 (1967) 11-34.
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