research

The Accelerated Kepler Problem

Abstract

The accelerated Kepler problem is obtained by adding a constant acceleration to the classical two-body Kepler problem. This setting models the dynamics of a jet-sustaining accretion disk and its content of forming planets as the disk loses linear momentum through the asymmetric jet-counterjet system it powers. The dynamics of the accelerated Kepler problem is analyzed using physical as well as parabolic coordinates. The latter naturally separate the problem's Hamiltonian into two unidimensional Hamiltonians. In particular, we identify the origin of the secular resonance in the accelerated Kepler problem and determine analytically the radius of stability boundary of initially circular orbits that are of particular interest to the problem of radial migration in binary systems as well as to the truncation of accretion disks through stellar jet acceleration.Comment: 16 pages, 9 figures, in press at Celestial Mechanics and Dynamical Astronom

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019
    Last time updated on 12/11/2016
    Last time updated on 12/11/2016
    Last time updated on 12/11/2016