36 research outputs found

    Lighting constraints on lunar surface operations

    Get PDF
    An investigation into the levels of ambient lighting on the lunar surface indicates that for most nearside locations, illumination will be adequate throughout most of the lunar night to conduct EVAs with only minor artificial illumination. The maximum lighting available during the lunar night from Earthshine will be similar to the light level on a July evening at approximately 8:00 pm in the southern United States (approximately 15 minutes after sunset). Because of the captured rotation of the Moon about the Earth, the location of the Earth will remain approximately constant throughout the lunar night, with consequent constant shadow length and angle. Variations in the level of Earthside illumination will be solely a function of Earth phase angle. Experience during the Apollo Program suggests that EVA activities during the period around the lunar noon may be difficult due to lack of surface definition caused by elimination of shadows

    Geologic Investigations Spurred by Analog Testing at the 7504 Cone-SP Mountain Area of the San Francisco Volcanic Field

    Get PDF
    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming

    Science Operations on the Lunar Surface - Understanding the Past, Testing in the Present, Considering the Future

    Get PDF
    The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team

    Managing Science Operations During Planetary Surface: The 2010 Desert RATS Test

    Get PDF
    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities. Desert RATS is a venue where new ideas can be tested, both individually and as part of an operation with multiple elements. By conducting operations over multiple yearly cycles, ideas that make the cut can be iterated and tested during follow-on years. This ultimately gives both the hardware and the personnel experience in the kind of multi-element integrated operations that will be necessary in future human planetary exploration

    Paper Session II-B - Space and Environmental Science from International Space Station

    Get PDF
    The attached payload sites and the nadir science window on ISS will provide a unique opportunity to perform scientific observations of the earth, space, and the low-earth orbit environment. The high inclination orbit planned for ISS will over fly approximately 75% of the Earth鈥檚 inhabited surface, giving a unique opportunity to view seasonal and longer term changes in surface conditions, processes and use. In addition, the ISS will provide a platform that will allow studies of atmospheric composition, the condition of the sun, and space environmental effects on materials over long periods of time, with the added benefit of allowing payload return for repair and recalibration. Astronomical observations and surveys from cosmic rays through radio wavelengths will also be possible from ISS. The unique assets of ISS for long term environmental studies are discussed, as well as some planned payloads and investigations which exploit these capabilities

    Planetary Protection Considerations in EVA System Design

    Get PDF
    To better constrain their origin, we have performed systematic studies of the siderophile element distribution in metal from Enstatite achondrites and iron-rich meteorites linked to Enstatite achondrites. Humayun (2010) reported 20 siderophile elements in the metal of Horse Creek, Mt. Egerton and Tucson, three iron meteorites known for their high Si content in their metal. The Horse Creek and Mt. Egerton irons have elemental patterns identical to metallic solids derived from partially molten enstatite chondrites. Tucson has an unusual siderophile element pattern that is reminiscent of IVA irons, except for the most volatile siderophiles with condensation temperatures below that of Cu (Sb, Ge, Sn) which are more depleted. The origin of Tucson metal is likely linked to an impact involving a reduced chondritic body that provided the silicates, and IVA iron. In a related study, van Acken et al. (2010) reported siderophile element abundances in metal and sulfides from aubrites, chondritic inclusions in aubrites, and other enstatite achondrites (including a separate section of Mt. Egerton). They found that aubrite metal was linked to metal in enstatite chondrites by low degree partial melting forming sulfur-rich metallic liquids. A restite origin of aubrites is not consistent with these metal compositions. The link between the metal compositions and cumulate silicates is not simple. The metal must have been incorporated from enstatite chondritic material that was assimilated by the aubrite magma. A manuscript is in preparation (van Acken et al., 2010). In a related study, van Acken et al. (2010, submitted) reported new precise Os isotope ratios and highly siderophile element abundances in Enstatite chondrites, Enstatite achondrites, Rumurutite chondrites to explore the range of nucleosynthetic variation in s-process Os. They observed nucleosynthetic anomalies, deficiencies of s-process Os, in most primitive enstatite chondrites, but showed the Rumurutite chondrites have very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs

    Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Get PDF
    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future

    Groundbreaking Mars Sample Return for Science and Human Exploration

    Get PDF
    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth

    Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design

    Get PDF
    Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions.RTOP 199-06-1

    Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Get PDF
    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques
    corecore