109 research outputs found

    Coenzyme recognition in para-hydroxybenzoate hydroxylase

    Get PDF
    Biochemistry is the science that studies the chemistry of life. This 'biological' chemistry includes growth, differentiation, movement, conductivity, immunity, transport and storage. During these processes proteins play an important role. The building blocks of proteins are amino acids, of which twenty are known. With these building blocks at hand it is possible to construct numerous proteins with many specific functions. A protein is not an elongated chain of amino acid residues but a compact very well defined three-dimensional structure. Two basic substructures are known in a protein, a cylindricalα-helix and an elongatedβ-strand. A number of theseα-helices and/orβ-strands connected by loop regions form a protein domain and a protein is built up of one or more domains. Furthermore, proteins can contain certain motifs (folds), structural conserved patterns. A large group of proteins with similar function and/or structure are called a protein family.A special group of proteins, called enzymes or biocatalysts, are able to increase the rate of a chemical reaction by lowering the activation energy of that reaction. Enzymes are highly specific, because they influence the reactivity of the substrate in such a way that the substrate is quickly and efficiently converted into a product. Moreover, flexible/dynamic movements in enzymes may play an important role during catalysis, because enzymes are not always rigid bodies. To control the reaction, enzymes often need cofactors. Some examples are the already mentioned dinucleotides NAD(P)H and FAD, that play a role in electron transfer (redox) reactions. Generally speaking, these cofactors bind very specific to a protein. A well-known binding motif for NAD(P)H and FAD in different enzyme families is the Rossmann fold (Chapter 1), discovered by Michael Rossmann in 1974.The NAD(P)H cofactor binds to the enzyme, electron transfer takes place and finally, the oxidized cofactor is released. In some proteins, the mode of NADPH binding is unknown. One example is p -hydroxybenzoate hydroxylase (PHBH), a flavoprotein monooxygenase that belongs to the family of FAD-dependent aromatic hydroxylases.FAD-dependent Aromatic HydroxylasesFAD-dependent aromatic hydroxylases play a role in the biodegradation of aromatic compounds. In nature, these compounds occur in plant polymers (lignin) as well as in proteins, steroïds and terpenes. During this century, the natural pool of aromatic compounds has been extended with products of industrial origin. Many of these synthetic compounds (pesticides, herbicides, fungicides and detergents) place a heavy burden on the environment and accumulate in soil and sludge. Microbial FAD-dependent aromatic hydroxylases catalyze the conversion of natural and synthetic aromatic substrates into products that can be further degraded to carbon dioxide and water. Recently, it was found that these enzymes are also involved in the biosynthesis of steroïds, plant hormones and antibiotics. PHBH is the archetype (prototype) of the family of FAD-dependent aromatic hydroxylases. In Wageningen, research on PHBH and related enzymes is embedded in the Wageningen Graduate School of Environmental Chemistry & Toxicology.p -Hydroxybenzoate Hydroxylasep -Hydroxybenzoate hydroxylase is isolated from the soil bacterium Pseudomonas fluorescens . This microbe can grow on 4-hydroxybenzoate (POHB) and other aromatic compounds as sole carbon source. PHBH catalyzes the conversion of POHB into 3,4-dihydroxybenzoate (DOHB) in the presence of NADPH and molecular oxygen. DOHB is a common intermediate in the aerobic degradation of plant material. After ring cleavage of DOHB and further degradation, the final products acetyl coenzyme A and succinate are fed into the citric acid cycle to provide energy for the cell.p -Hydroxybenzoate hydroxylase has been subject to detailed kinetic and structural studies. The three-dimensional structure of PHBH is built up of three domains (Chapter 1). The first domain is the FAD-binding domain with the specific Rossmann fold for binding the ADP part of FAD. The second domain is the substrate-binding domain and the third domain (interface domain) is important for the interaction with another PHBH subunit, because PHBH exists as a dimer.The structure of the enzyme-substrate complex is known in atomic detail. Recently, it was found that the flavin ring is able to move between an "open" and "closed" conformation. This flavin mobility is important for substrate binding and product release. However, unknown is the NADPH-binding site and where the reaction between NADPH and FAD takes place. Related questions are:-Which amino acids play a role in cofactor binding?-Is there a particular sequence motif for cofactor binding?Which amino acids are responsible for the coenzyme specificity and involved in binding of the 2'-phosphate moiety of NADPH?Another very important question concerns the effector role of the substrate. Upon binding of the aromatic substrate the flow of electrons from NADPH to FAD is 105 times enhanced. However, the molecular principles of this control are poorly understood. In this thesis we have tried to shed more light on the coenzyme recognition by PHBH.Flavin ring mobilityIn Chapter 2 the FAD in PHBH is substituted by a modified FAD, normally present in alcohol oxidase from methylotrophic yeasts. The crystal structure of p -hydroxybenzoate hydroxylase with this flavin analog not only represents the first crystal structure of an enzyme reconstituted with a modified flavin, but also provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The reconstituted enzyme-substrate complex shows that the flavin ring attains the "open" conformation. In the native enzyme-substrate complex the flavin ring is located in the "closed" conformation. The rate of flavin reduction by NADPH is much more rapid as compared to the native enzyme-substrate complex, suggesting that the mobility of the flavin ring is essential for the efficient reduction of the enzyme/substrate complex.Amino acids involved in NADPH bindingTo investigate the mode of NADPH binding, several amino acid residues were replaced by site-directed mutagenesis. The amino acids were selected on the basis of earlier results from chemical modification, crystallographic and modeling studies. Chapters 3, 4, 6 and 8 describe the properties of single mutants. It is concluded that Arg33, Gln34, Tyr38, Arg42, Arg44, His162 and Arg269 are involved in NADPH binding.Structural motif for NADPH bindingPHBH contains two conserved sequence motifs, both involved in FAD binding. Chapter 5 describes a new unique sequence motif for the family of FAD-dependent aromatic hydroxylases, putatively involved in both FAD and NAD(P)H binding. From the recently determined crystal structure of phenol hydroxylase it is deduced that this sequence motif is also structurally conserved. Chapter 6 and 7 show that only His162 of this novel motif is directly important for the binding of NADPH.Coenzyme specificityChapter 8 describes the cloning, purification and characterization of PHBH from Pseudomonas species CBS3. This is the first PHBH enzyme with known sequence that is active with NADH. Based on sequence analysis and homology modelling it is proposed that the helix H2 region is important for the binding of the 2'-phosphate moiety of NADPH. In Chapter 9 , the coenzyme specificity of PHBH from Pseudomonas fluorescens was addressed in further detail. Multiple replacements in helix H2 showed that Arg33 and Tyr38 are crucially involved in determining the coenzyme specificity. For the first time, a PHBH enzyme was constructed, which is more efficient with NADH.Effector specificitySubstrate binding is essential for a rapid reduction of FAD. This allows the subsequent attack of oxygen and the formation of the flavinhydroperoxide hydroxylating species. The question arises whether the stimulating effect of substrate binding on flavin reduction is caused by a large conformational change or merely due to subtle rearrangements in the active site. Chapter 10 describes the crystal structure of the substrate-free enzyme. This study shows that no large conformational changes take place upon substrate (analog) binding. The stimulating role of POHB is probably caused by several subtle effects. Stabilisation of the phenolate form of the substrate results in distribution of the electronic charges in the active site. These charge distributions influence the dynamic equilibrium between the "open" and "closed" conformation of FAD in such a way that the nicotinamide ring of NADPH and the isoalloxazine ring of FAD become optimally oriented for efficient reduction.</p

    Functional analysis of two-amino acid substitutions in gp91 phox in a patient with X-linked flavocytochrome b558-positive chronic granulomatous disease by means of transgenic PLB-985 cells

    Get PDF
    Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack NADPH oxidase activity. The most common form is caused by mutations in the CYBB gene encoding gp91phox protein, the heavy chain of cytochrome b558, which is the redox element of NADPH oxidase. In some rare cases, the mutated gp91phox is normally expressed but no NADPH oxidase can be detected. This type of CGD is called X91+ CGD. We have previously reported an X+ CGD case with a double-missense mutation in gp91phox. Transgenic PLB-985 cells have now been made to study the impact of each single mutation on oxidase activity and assembly to rule out a possible new polymorphism in the CYBB gene. The His303Asn/Pro304Arg gp91phox transgenic PLB-985 cells exactly mimic the phenotype of the neutrophils of the X+ CGD patient. The His303Asn mutation is sufficient to inhibit oxidase activity in intact cells and in a broken cell system, whereas in the Pro304Arg mutant, residual activity suggests that the Pro304Arg substitution is less devastating to oxidase activity than the His303Asn mutation. The study of NADPH oxidase assembly following the in vitro and in vivo translocation of cytosolic factors p47phox and p67phox has demonstrated that, in the double mutant and in the His303Asn mutant, NADPH oxidase assembly is abolished, although the translocation is only attenuated in Pro304Arg mutant cells. Thus, even though the His303Asn mutation has a more severe inhibitory effect on NADPH oxidase activity and assembly than the Pro304Arg mutation, neither mutation can be considered as a polymorphism

    Cysteine Depletion Causes Oxidative Stress and Triggers Outer Membrane Vesicle Release by Neisseria meningitidis Implications for Vaccine Development

    Get PDF
    Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV), which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (61500 human doses per liter cultivation). Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteinedependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis

    Biorefinery : recovery of valuable biomolecules

    No full text
    Inaugural speech Wageningen University, 23 April 201

    Microalgae for the production of bulk chemicals and biofuels

    No full text
    The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the only end product from microalgae. In order to develop a more sustainable and economically feasible process, all biomass components (e.g. proteins, lipids, carbohydrates) should be used and therefore biorefining of microalgae is very important for the selective separation and use of the functional biomass components. If biorefining of microalgae is applied, lipids should be fractionated into lipids for biodiesel, lipids as a feedstock for the chemical industry and -3 fatty acids, proteins and carbohydrates for food, feed and bulk chemicals, and the oxygen produced should be recovered also. If, in addition, production of algae is done on residual nutrient feedstocks and CO2, and production of microalgae is done on a large scale against low production costs, production of bulk chemicals and fuels from microalgae will become economically feasible. In order to obtain that, a number of bottlenecks need to be removed and a multidisciplinary approach in which systems biology, metabolic modeling, strain development, photobioreactor design and operation, scale-up, biorefining, integrated production chain, and the whole system design (including logistics) should be addresse
    corecore