103 research outputs found

    Monitoring of lung edema by microwave reflectometry during lung ischemia-reperfusion injury in vivo

    Get PDF
    It is still unclear whether lung edema can be monitored by microwave reflectometry and whether the measured changes in lung dry matter content (DMC) are accompanied by changes in PaO(2) and in pro-to anti-inflammatory cytokine expression (IFN-gamma and IL-10). Right rat lung hili were cross-clamped at 37 degrees C for 0, 60, 90 or 120 min ischemia followed by 120 min reperfusion. After 90 min (DMC: 15.9 +/- 1.4%; PaO(2): 76.7 +/- 18 mm Hg) and 120 min ischemia (DMC: 12.8 +/- 0.6%; PaO(2): 43 +/- 7 mm Hg), a significant decrease in DMC and PaO(2) throughout reperfusion compared to 0 min ischemia (DMC: 19.5 +/- 1.11%; PaO(2): 247 +/- 33 mm Hg; p < 0.05) was observed. DMC and PaO(2) decreased after 60 min ischemia but recovered during reperfusion (DMC: 18.5 +/- 2.4%; PaO(2) : 173 +/- 30 mm Hg). DMC values reflected changes on the physiological and molecular level. In conclusion, lung edema monitoring by microwave reflectometry might become a tool for the thoracic surgeon. Copyright (c) 2006 S. Karger AG, Basel

    Protection from pulmonary ischemia-reperfusion injury by adenosine A2A receptor activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung ischemia-reperfusion (IR) injury leads to significant morbidity and mortality which remains a major obstacle after lung transplantation. However, the role of various subset(s) of lung cell populations in the pathogenesis of lung IR injury and the mechanisms of cellular protection remain to be elucidated. In the present study, we investigated the effects of adenosine A<sub>2A </sub>receptor (A<sub>2A</sub>AR) activation on resident lung cells after IR injury using an isolated, buffer-perfused murine lung model.</p> <p>Methods</p> <p>To assess the protective effects of A<sub>2A</sub>AR activation, three groups of C57BL/6J mice were studied: a sham group (perfused for 2 hr with no ischemia), an IR group (1 hr ischemia + 1 hr reperfusion) and an IR+ATL313 group where ATL313, a specific A<sub>2A</sub>AR agonist, was included in the reperfusion buffer after ischemia. Lung injury parameters and pulmonary function studies were also performed after IR injury in A<sub>2A</sub>AR knockout mice, with or without ATL313 pretreatment. Lung function was assessed using a buffer-perfused isolated lung system. Lung injury was measured by assessing lung edema, vascular permeability, cytokine/chemokine activation and myeloperoxidase levels in the bronchoalveolar fluid.</p> <p>Results</p> <p>After IR, lungs from C57BL/6J wild-type mice displayed significant dysfunction (increased airway resistance, pulmonary artery pressure and decreased pulmonary compliance) and significant injury (increased vascular permeability and edema). Lung injury and dysfunction after IR were significantly attenuated by ATL313 treatment. Significant induction of TNF-α, KC (CXCL1), MIP-2 (CXCL2) and RANTES (CCL5) occurred after IR which was also attenuated by ATL313 treatment. Lungs from A<sub>2A</sub>AR knockout mice also displayed significant dysfunction, injury and cytokine/chemokine production after IR, but ATL313 had no effect in these mice.</p> <p>Conclusion</p> <p>Specific activation of A<sub>2A</sub>ARs provides potent protection against lung IR injury via attenuation of inflammation. This protection occurs in the absence of circulating blood thereby indicating a protective role of A<sub>2A</sub>AR activation on resident lung cells such as alveolar macrophages. Specific A<sub>2A</sub>AR activation may be a promising therapeutic target for the prevention or treatment of pulmonary graft dysfunction in transplant patients.</p

    Ischemia of the lung causes extensive long-term pulmonary injury: an experimental study

    Get PDF
    Background: Lung ischemia-reperfusion injury (LIRI) is suggested to be a major risk factor for development of primary acute graft failure (PAGF) following lung transplantation, although other factors have been found to interplay with LIRI. The question whether LIRI exclusively results in PAGF seems difficult to answer, which is partly due to the lack of a long-term experimental LIRI model, in which PAGF changes can be studied. In addition, the long-term effects of LIRI are unclear and a detailed description of the immunological changes over time after LIRI is missing. Therefore our purpose was to establish a long-term experimental model of LIRI, and to study the impact of LIRI on the development of PAGF, using a broad spectrum of LIRI parameters including leukocyte kinetics.Methods: Male Sprague-Dawley rats (n = 135) were subjected to 120 minutes of left lung warm ischemia or were sham-operated. A third group served as healthy controls. Animals were sacrificed 1, 3, 7, 30 or 90 days after surgery. Blood gas values, lung compliance, surfactant conversion, capillary permeability, and the presence of MMP-2 and MMP-9 in broncho-alveolar-lavage flui

    BPGA- an ultra-fast pan-genome analysis pipeline

    Get PDF
    Recent advances in ultra-high-throughput sequencing technology and metagenomics have led to a paradigm shift in microbial genomics from few genome comparisons to large-scale pan-genome studies at different scales of phylogenetic resolution. Pan-genome studies provide a framework for estimating the genomic diversity of the dataset, determining core (conserved), accessory (dispensable) and unique (strain-specific) gene pool of a species, tracing horizontal gene-flux across strains and providing insight into species evolution. The existing pan genome software tools suffer from various limitations like limited datasets, difficult installation/requirements, inadequate functional features etc. Here we present an ultra-fast computational pipeline BPGA (Bacterial Pan Genome Analysis tool) with seven functional modules. In addition to the routine pan genome analyses, BPGA introduces a number of novel features for downstream analyses like core/pan/MLST (Multi Locus Sequence Typing) phylogeny, exclusive presence/absence of genes in specific strains, subset analysis, atypical G + C content analysis and KEGG & COG mapping of core, accessory and unique genes. Other notable features include minimum running prerequisites, freedom to select the gene clustering method, ultra-fast execution, user friendly command line interface and high-quality graphics outputs. The performance of BPGA has been evaluated using a dataset of complete genome sequences of 28 Streptococcus pyogenes strains

    Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice

    Get PDF
    Lung ischaemia–reperfusion-induced oedema (LIRE) is a life-threatening condition that causes pulmonary oedema induced by endothelial dysfunction. Here we show that lungs from mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2y/−) or the classical transient receptor potential channel 6 (TRPC6−/−) are protected from LIR-induced oedema (LIRE). Generation of chimeric mice by bone marrow cell transplantation and endothelial-specific Nox2 deletion showed that endothelial Nox2, but not leukocytic Nox2 or TRPC6, are responsible for LIRE. Lung endothelial cells from Nox2- or TRPC6-deficient mice showed attenuated ischaemia-induced Ca2+ influx, cellular shape changes and impaired barrier function. Production of reactive oxygen species was completely abolished in Nox2y/− cells. A novel mechanistic model comprising endothelial Nox2-derived production of superoxide, activation of phospholipase C-γ, inhibition of diacylglycerol (DAG) kinase, DAG-mediated activation of TRPC6 and ensuing LIRE is supported by pharmacological and molecular evidence. This mechanism highlights novel pharmacological targets for the treatment of LIRE

    Comparing De Novo Genome Assembly: The Long and Short of It

    Get PDF
    Recent advances in DNA sequencing technology and their focal role in Genome Wide Association Studies (GWAS) have rekindled a growing interest in the whole-genome sequence assembly (WGSA) problem, thereby, inundating the field with a plethora of new formalizations, algorithms, heuristics and implementations. And yet, scant attention has been paid to comparative assessments of these assemblers' quality and accuracy. No commonly accepted and standardized method for comparison exists yet. Even worse, widely used metrics to compare the assembled sequences emphasize only size, poorly capturing the contig quality and accuracy. This paper addresses these concerns: it highlights common anomalies in assembly accuracy through a rigorous study of several assemblers, compared under both standard metrics (N50, coverage, contig sizes, etc.) as well as a more comprehensive metric (Feature-Response Curves, FRC) that is introduced here; FRC transparently captures the trade-offs between contigs' quality against their sizes. For this purpose, most of the publicly available major sequence assemblers – both for low-coverage long (Sanger) and high-coverage short (Illumina) reads technologies – are compared. These assemblers are applied to microbial (Escherichia coli, Brucella, Wolbachia, Staphylococcus, Helicobacter) and partial human genome sequences (Chr. Y), using sequence reads of various read-lengths, coverages, accuracies, and with and without mate-pairs. It is hoped that, based on these evaluations, computational biologists will identify innovative sequence assembly paradigms, bioinformaticists will determine promising approaches for developing “next-generation” assemblers, and biotechnologists will formulate more meaningful design desiderata for sequencing technology platforms. A new software tool for computing the FRC metric has been developed and is available through the AMOS open-source consortium

    Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Persistent colonization of the human stomach by <it>Helicobacter pylori </it>is associated with asymptomatic gastric inflammation (gastritis) and an increased risk of duodenal ulceration, gastric ulceration, and non-cardia gastric cancer. In previous studies, the genome sequences of <it>H. pylori </it>strains from patients with gastritis or duodenal ulcer disease have been analyzed. In this study, we analyzed the genome sequences of an <it>H. pylori </it>strain (98-10) isolated from a patient with gastric cancer and an <it>H. pylori </it>strain (B128) isolated from a patient with gastric ulcer disease.</p> <p>Results</p> <p>Based on multilocus sequence typing, strain 98-10 was most closely related to <it>H. pylori </it>strains of East Asian origin and strain B128 was most closely related to strains of European origin. Strain 98-10 contained multiple features characteristic of East Asian strains, including a type s1c <it>vacA </it>allele and a <it>cagA </it>allele encoding an EPIYA-D tyrosine phosphorylation motif. A core genome of 1237 genes was present in all five strains for which genome sequences were available. Among the 1237 core genes, a subset of alleles was highly divergent in the East Asian strain 98-10, encoding proteins that exhibited <90% amino acid sequence identity compared to corresponding proteins in the other four strains. Unique strain-specific genes were identified in each of the newly sequenced strains, and a set of strain-specific genes was shared among <it>H. pylori </it>strains associated with gastric cancer or premalignant gastric lesions.</p> <p>Conclusion</p> <p>These data provide insight into the diversity that exists among <it>H. pylori </it>strains from diverse clinical and geographic origins. Highly divergent alleles and strain-specific genes identified in this study may represent useful biomarkers for analyzing geographic partitioning of <it>H. pylori </it>and for identifying strains capable of inducing malignant or premalignant gastric lesions.</p

    A Comparison of Shiga-Toxin 2 Bacteriophage from Classical Enterohemorrhagic Escherichia coli Serotypes and the German E. coli O104:H4 Outbreak Strain

    Get PDF
    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors

    A Global Overview of the Genetic and Functional Diversity in the Helicobacter pylori cag Pathogenicity Island

    Get PDF
    The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown
    corecore