1,266 research outputs found

    Quasilocal Conservation Laws: Why We Need Them

    Full text link
    We argue that conservation laws based on the local matter-only stress-energy-momentum tensor (characterized by energy and momentum per unit volume) cannot adequately explain a wide variety of even very simple physical phenomena because they fail to properly account for gravitational effects. We construct a general quasi}local conservation law based on the Brown and York total (matter plus gravity) stress-energy-momentum tensor (characterized by energy and momentum per unit area), and argue that it does properly account for gravitational effects. As a simple example of the explanatory power of this quasilocal approach, consider that, when we accelerate toward a freely-floating massive object, the kinetic energy of that object increases (relative to our frame). But how, exactly, does the object acquire this increasing kinetic energy? Using the energy form of our quasilocal conservation law, we can see precisely the actual mechanism by which the kinetic energy increases: It is due to a bona fide gravitational energy flux that is exactly analogous to the electromagnetic Poynting flux, and involves the general relativistic effect of frame dragging caused by the object's motion relative to us.Comment: 20 pages, 1 figur

    A New Approach to Black Hole Microstates

    Get PDF
    If one encodes the gravitational degrees of freedom in an orthonormal frame field there is a very natural first order action one can write down (which in four dimensions is known as the Goldberg action). In this essay we will show that this action contains a boundary action for certain microscopic degrees of freedom living at the horizon of a black hole, and argue that these degrees of freedom hold great promise for explaining the microstates responsible for black hole entropy, in any number of spacetime dimensions. This approach faces many interesting challenges, both technical and conceptual.Comment: 6 pages, 0 figures, LaTeX; submitted to Mod. Phys. Lett. A.; this essay received "honorable mention" from the Gravity Research Foundation, 199

    Evaluating Alternatives for Communicating About Food Risk

    Get PDF
    This article describes the development and preliminary evaluation of model materials designed as one-step in helping consumers understand how scientists assess food risk, how that information is used in food safety policy decisions and what individuals can do to protect themselves from residual risks

    Do we know the mass of a black hole? Mass of some cosmological black hole models

    Full text link
    Using a cosmological black hole model proposed recently, we have calculated the quasi-local mass of a collapsing structure within a cosmological setting due to different definitions put forward in the last decades to see how similar or different they are. It has been shown that the mass within the horizon follows the familiar Brown-York behavior. It increases, however, outside the horizon again after a short decrease, in contrast to the Schwarzschild case. Further away, near the void, outside the collapsed region, and where the density reaches the background minimum, all the mass definitions roughly coincide. They differ, however, substantially far from it. Generically, we are faced with three different Brown-York mass maxima: near the horizon, around the void between the overdensity region and the background, and another at cosmological distances corresponding to the cosmological horizon. While the latter two maxima are always present, the horizon mass maxima is absent before the onset of the central singularity.Comment: 11 pages, 8 figures, revised version, accepted in General Relativity and Gravitatio

    Feynman Graphs and Generalized Eikonal Approach to High Energy Knock-Out Processes

    Full text link
    The cross section of hard semi-exclusive A(e,eâ€ČN)(A−1)A(e,e'N)(A-1) reactions for fixed missing energy and momentum is calculated within the eikonal approximation. Relativistic dynamics and kinematics of high energy processes are unambiguously accounted for by using the analysis of appropriate Feynman diagrams. A significant dependence of the final state interactions on the missing energy is found, which is important for interpretation of forthcoming color transparency experiments. A new, more stringent kinematic restriction on the region where the contribution of short-range nucleon correlations is enhanced in semi-exclusive knock-out processes is derived. It is also demonstrated that the use of light-cone variables leads to a considerable simplification of the description of high-energy knock-out reactions.Comment: 24 pages, LaTex, two Latex and two ps figures, uses FEYNMAN.tex and psfig.sty. Revisied version to appear in Phys. Rev.

    Selected Topics in High Energy Semi-Exclusive Electro-Nuclear Reactions

    Get PDF
    We review the present status of the theory of high energy reactions with semi-exclusive nucleon electro-production from nuclear targets. We demonstrate how the increase of transferred energies in these reactions opens a complete new window in studying the microscopic nuclear structure at small distances. The simplifications in theoretical descriptions associated with the increase of the energies are discussed. The theoretical framework for calculation of high energy nuclear reactions based on the effective Feynman diagram rules is described in details. The result of this approach is the generalized eikonal approximation (GEA), which is reduced to Glauber approximation when nucleon recoil is neglected. The method of GEA is demonstrated in the calculation of high energy electro-disintegration of the deuteron and A=3 targets. Subsequently we generalize the obtained formulae for A>3 nuclei. The relation of GEA to the Glauber theory is analyzed. Then based on the GEA framework we discuss some of the phenomena which can be studied in exclusive reactions, these are: nuclear transparency and short-range correlations in nuclei. We illustrate how light-cone dynamics of high-energy scattering emerge naturally in high energy electro-nuclear reactions.Comment: LaTex file with 51 pages and 23 eps figure

    Soil microbial communities in diverse agroecosystems exposed to the herbicide glyphosate

    Get PDF
    © 2020 American Society for Microbiology. Despite glyphosate\u27s wide use for weed control in agriculture, questions remain about the herbicide\u27s effect on soil microbial communities. The existing scientific literature contains conflicting results, from no observable effect of glyphosate to the enrichment of agricultural pathogens such as Fusarium spp. We conducted a comprehensive field-based study to compare the microbial communities on the roots of plants that received a foliar application of glyphosate to adjacent plants that did not. The 2-year study was conducted in Beltsville, MD, and Stoneville, MS, with corn and soybean crops grown in a variety of organic and conventional farming systems. By sequencing environmental metabarcode amplicons, the prokaryotic and fungal communities were described, along with chemical and physical properties of the soil. Sections of corn and soybean roots were plated to screen for the presence of plant pathogens. Geography, farming system, and season were significant factors determining the composition of fungal and prokaryotic communities. Plots treated with glyphosate did not differ from untreated plots in overall microbial community composition after controlling for other factors. We did not detect an effect of glyphosate treatment on the relative abundance of organisms such as Fusarium spp
    • 

    corecore