284 research outputs found

    Epidemiological and clinical characteristics of international travelers with enteric fever and antibiotic resistance profiles of their isolates: A GeoSentinel analysis

    Get PDF
    Copyright © 2020 American Society for Microbiology. All Rights Reserved. Enteric fever, caused by Salmonella enterica serovar Typhi (S. Typhi) and S. enterica serovar Paratyphi (S. Paratyphi), is a common travel-related illness. Limited data are available on the antimicrobial resistance (AMR) patterns of these serovars among travelers. Records of travelers with a culture-confirmed diagnosis seen during or after travel from January 2007 to December 2018 were obtained from GeoSentinel. Traveler demographics and antimicrobial susceptibility data were analyzed. Isolates were classified as nonsusceptible if intermediate or resistant or as susceptible in accordance with the participating site’s national guidelines. A total of 889 travelers (S. Typhi infections, n = 474; S. Paratyphi infections, n = 414; coinfection, n = 1) were included; 114 (13%) were children of (41%) traveled to visit friends and relatives (VFRs) and acquired the infection in South Asia (71%). Child travelers with S. Typhi infection were most frequently VFRs (77%). The median trip duration was 31 days (interquartile range, 18 to 61 days), and 448 of 691 travelers (65%) had no pretravel consultation. Of 143 S. Typhi and 75 S. Paratyphi isolates for which there were susceptibility data, nonsusceptibility to antibiotics varied (fluoroquinolones, 65% and 56%, respectively; co-trimoxazole, 13% and 0%; macrolides, 8% and 16%). Two S. Typhi isolates (1.5%) from India were nonsusceptible to third-generation cephalosporins. S. Typhi fluoroquinolone nonsusceptibility was highest when infection was acquired in South Asia (70 of 90 isolates; 78%) and sub-Saharan Africa (6 of 10 isolates; 60%). Enteric fever is an important travel-associated illness complicated by AMR. Our data contribute to a better understanding of region-specific AMR, helping to inform empirical treatment options. Prevention measures need to focus on high-risk travelers including VFRs and children

    Evidence of Hot Carrier Extraction in Metal Halide Perovskite Solar Cells

    Full text link
    The presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)3 solar cell at ambient temperatures and under practical solar concentration. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a non-equilibrium photocurrent at higher fluence in light J-V measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence are shown to compete with a gradual red shift in the PL peak energy as photo induced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a non-equilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification

    Atomistic origins of high-performance in hybrid halide perovskite solar cells

    Get PDF
    The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitised and organic photovoltaics. High power conversion efficiency can be realised in both mesoporous and thin-film device architectures. We address the origin of this success in the context of the materials chemistry and physics of the bulk perovskite as described by electronic structure calculations. In addition to the basic optoelectronic properties essential for an efficient photovoltaic device (spectrally suitable band gap, high optical absorption, low carrier effective masses), the materials are structurally and compositionally flexible. As we show, hybrid perovskites exhibit spontaneous electric polarisation; we also suggest ways in which this can be tuned through judicious choice of the organic cation. The presence of ferroelectric domains will result in internal junctions that may aid separation of photoexcited electron and hole pairs, and reduction of recombination through segregation of charge carriers. The combination of high dielectric constant and low effective mass promotes both Wannier-Mott exciton separation and effective ionisation of donor and acceptor defects. The photoferroic effect could be exploited in nanostructured films to generate a higher open circuit voltage and may contribute to the current-voltage hysteresis observed in perovskite solar cells.Comment: 6 pages, 5 figure

    Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges.

    Get PDF
    Organometallic lead-halide perovskite-based solar cells now approach 18% efficiency. Introducing a mixture of bromide and iodide in the halide composition allows tuning of the optical bandgap. We prepare mixed bromide-iodide lead perovskite films CH3NH3Pb(I1-xBrx)3 (0 ≤ x ≤ 1) by spin-coating from solution and obtain films with monotonically varying bandgaps across the full composition range. Photothermal deflection spectroscopy, photoluminescence, and X-ray diffraction show that following suitable fabrication protocols these mixed lead-halide perovskite films form a single phase. The optical absorption edge of the pure triiodide and tribromide perovskites is sharp with Urbach energies of 15 and 23 meV, respectively, and reaches a maximum of 90 meV for CH3NH3PbI1.2Br1.8. We demonstrate a bromide-iodide lead perovskite film (CH3NH3PbI1.2Br1.8) with an optical bandgap of 1.94 eV, which is optimal for tandem cells of these materials with crystalline silicon devices.We acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) and the Winton Programme (Cambridge) for the Physics of Sustainability. THT acknowledges funding from Cambridge Australia Scholarships and the Cambridge Commonwealth Trust. D.C. acknowledges support from St. John's College Cambridge and the Winton Programme (Cambridge) for the Physics of Sustainability.This is the final published version. It's also available at: http://pubs.acs.org/doi/abs/10.1021/jz501332v

    hnRNP A1 and hnRNP F Modulate the Alternative Splicing of Exon 11 of the Insulin Receptor Gene

    Get PDF
    Exon 11 of the insulin receptor gene (INSR) is alternatively spliced in a developmentally and tissue-specific manner. Linker scanning mutations in a 5′ GA-rich enhancer in intron 10 identified AGGGA sequences that are important for enhancer function. Using RNA-affinity purification and mass spectrometry, we identified hnRNP F and hnRNP A1 binding to these AGGGA sites and also to similar motifs at the 3′ end of the intron. The hnRNPs have opposite functional effects with hnRNP F promoting and hnRNP A1 inhibiting exon 11 inclusion, and deletion of the GA-rich elements eliminates both effects. We also observed specific binding of hnRNP A1 to the 5′ splice site of intron 11. The SR protein SRSF1 (SF2/ASF) co-purified on the GA-rich enhancer and, interestingly, also competes with hnRNP A1 for binding to the splice site. A point mutation -3U→C decreases hnRNP A1 binding, increases SRSF1 binding and renders the exon constitutive. Lastly, our data point to a functional interaction between hnRNP F and SRSF1 as a mutant that eliminates SRSF1 binding to exon 11, or a SRSF1 knockdown, which prevents the stimulatory effect of hnRNP F over expression

    Measurement and modelling of dark current decay transients in perovskite solar cells

    Get PDF
    The current decay in response to a sudden change of applied bias up to 1 V has been measured on a methylammonium lead triiodide perovskite solar cell with titania and spiro-OMeTAD transport layers, for temperatures between 258 and 308 K. These measurements are highly reproducible, in contrast to most other techniques used to investigate perovskite cells. A drift-diffusion model that accounts for slow moving ions as well as electrons and holes acting as charge carriers was used to predict the current transients. The close fit of the model predictions to the measurements shows that mobile ions in the perovskite layer influence transient behaviour on timescales of up to 50 s. An activation energy of 0.55 eV is inferred from fitting simulations to measurements made at room temperature

    Proton‐Radiation Tolerant All‐Perovskite Multijunction Solar Cells

    Get PDF
    Funder: European Research Council; Id: http://dx.doi.org/10.13039/501100000781Funder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266Funder: European Union's Horizon 2020Abstract: Radiation‐resistant but cost‐efficient, flexible, and ultralight solar sheets with high specific power (W g−1) are the “holy grail” of the new space revolution, powering private space exploration, low‐cost missions, and future habitats on Moon and Mars. Herein, this study investigates an all‐perovskite tandem photovoltaic (PV) technology that uses an ultrathin active layer (1.56 µm) but offers high power conversion efficiency, and discusses its potential for high‐specific‐power applications. This study demonstrates that all‐perovskite tandems possess a high tolerance to the harsh radiation environment in space. The tests under 68 MeV proton irradiation show negligible degradation (22%. Using high spatial resolution photoluminescence (PL) microscopy, it is revealed that defect clusters in GaAs are responsible for the degradation of current space‐PV. By contrast, negligible reduction in PL of the individual perovskite subcells even after the highest dose studied is observed. Studying the intensity‐dependent PL of bare low‐gap and high‐gap perovskite absorbers, it is shown that the VOC, fill factor, and efficiency potentials remain identically high after irradiation. Radiation damage of all‐perovskite tandems thus has a fundamentally different origin to traditional space PV

    The Unknown Risk of Vertical Transmission in Sleeping Sickness—A Literature Review

    Get PDF
    Children with human African trypanosomiasis (HAT) present with a range of generally non-specific symptoms. Late diagnosis is frequent with often tragic outcomes. Trypanosomes can infect the foetus by crossing the placenta. Unequivocal cases of congenital infection that have been reported include newborn babies of infected mothers who were diagnosed with HAT in the first 5 days of life and children of infected mothers who had never entered an endemic country themselves
    corecore