57 research outputs found

    Regulation of Polar Peptidoglycan Biosynthesis by Wag31 Phosphorylation in Mycobacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sensing and responding to environmental changes is a central aspect of cell division regulation. <it>Mycobacterium tuberculosis </it>contains eleven Ser/Thr kinases, two of which, PknA and PknB, are key signaling molecules that regulate cell division/morphology. One substrate of these kinases is Wag31, and we previously showed that partial depletion of Wag31 caused morphological changes indicative of cell wall defects, and that the phosphorylation state of Wag31 affected cell growth in mycobacteria. In the present study, we further characterized the role of the Wag31 phosphorylation in polar peptidoglycan biosynthesis.</p> <p>Results</p> <p>We demonstrate that the differential growth among cells expressing different <it>wag31 </it>alleles (wild-type, phosphoablative, or phosphomimetic) is caused by, at least in part, dissimilar nascent peptidoglycan biosynthesis. The phosphorylation state of Wag31 is found to be important for protein-protein interactions between the Wag31 molecules, and thus, for its polar localization. Consistent with these results, cells expressing a phosphomimetic <it>wag31 </it>allele have a higher enzymatic activity in the peptidoglycan biosynthetic pathway.</p> <p>Conclusions</p> <p>The Wag31<sub>Mtb </sub>phosphorylation is a novel molecular mechanism by which Wag31<sub>Mtb </sub>regulates peptidoglycan synthesis and thus, optimal growth in mycobacteria.</p

    Co-Immunization of Plasmid DNA Encoding IL-12 and IL-18 with Bacillus Calmette-Guérin Vaccine against Progressive Tuberculosis

    Get PDF
    ∙ The authors have no financial conflicts of interest. Purpose: Bacillus Calmette-Guérin (BCG) vaccine has widely been used to immunize against tuberculosis, but its protective efficacy is variable in adult pulmonary tuberculosis, while it is not efficiently protective against progressive infection of virulent Mycobacterium tuberculosis strains. In this study, the protective effects of plasmid DNA vaccine constructs encoding IL-12 or IL-18 with the BCG vaccine were evaluated against progressive infection of M. tuberculosis, using mouse aerosol challenge model. Materials and Methods: Plasmid DNA vaccine constructs encoding IL-12 or IL-18 were constructed and mice were immunized with the BCG vaccine or with IL-12 DNA or IL-18 DNA vaccine constructs together with the BCG vaccine. Results: The BCG vaccine induced high level of interferon gamma (IFN-γ) but co-immunization of IL-12 or IL-18 DNA vaccine constructs with the BCG vaccine induced significantly higher level of IFN-γ than a single BCG vaccine. The BCG vaccine was highly protective at early stage of M. tuberculosi

    Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence

    Get PDF
    The stringent response enables Mycobacterium tuberculosis (Mtb) to shut down its replication and metabolism under various stresses. Here we show that Mtb lacking the stringent response enzyme RelMtb was unable to slow its replication rate during nutrient starvation. Metabolomics analysis revealed that the nutrient-starved relMtb-deficient strain had increased metabolism similar to that of exponentially growing wild-type bacteria in nutrient-rich broth, consistent with an inability to enter quiescence. Deficiency of relMtb increased the susceptibility of mutant bacteria to killing by isoniazid during nutrient starvation and in the lungs of chronically infected mice. We screened a pharmaceutical library of over 2 million compounds for inhibitors of RelMtb and showed that the lead compound X9 was able to directly kill nutrient-starved M. tuberculosis and enhanced the killing activity of isoniazid. Inhibition of RelMtb is a promising approach to target M. tuberculosis persisters, with the potential to shorten the duration of TB treatment.This work was supported by R01AI083125, R21AI122922, and R21AI114507A to P.C.

    Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression

    Get PDF
    In the search for new drug targets, we evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) and constructed an Mtb mutant lacking the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase, BioA. In biotin-free synthetic media, ΔbioA did not produce wild-type levels of biotinylated proteins, and therefore did not grow and lost viability. ΔbioA was also unable to establish infection in mice. Conditionally-regulated knockdown strains of Mtb similarly exhibited impaired bacterial growth and viability in vitro and in mice, irrespective of the timing of transcriptional silencing. Biochemical studies further showed that BioA activity has to be reduced by approximately 99% to prevent growth. These studies thus establish that de novo biotin synthesis is essential for Mtb to establish and maintain a chronic infection in a murine model of TB. Moreover, these studies provide an experimental strategy to systematically rank the in vivo value of potential drug targets in Mtb and other pathogens

    Metabolic anticipation in Mycobacterium tuberculosis

    No full text
    International audienc

    Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase:potential for drug development

    No full text
    Mycobacterium tuberculosis utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate and its isomer, dimethylallyl diphosphate, precursors of all isoprenoid compounds. This pathway is of interest as a source of new drug targets, as it is absent from humans and disruption of the responsible genes has shown a lethal phenotype for Escherichia coli. In the MEP pathway, 4-diphosphocytidyl-2-C-methyl-d-erythritol is formed from 2-C-methyl-d-erythritol 4-phosphate (MEP) and CTP in a reaction catalyzed by a 4-diphosphocytidyl-2-C-methyl-d-erythritol synthase (IspD). In the present work, we demonstrate that Rv3582c is essential for M. tuberculosis: Rv3582c has been cloned and expressed, and the encoded protein has been purified. The purified M. tuberculosis IspD protein was capable of catalyzing the formation of 4-diphosphocytidyl-2-C-methyl-d-erythritol in the presence of MEP and CTP. The enzyme was active over a broad pH range (pH 6.0 to 9.0), with peak activity at pH 8.0. The activity was absolutely dependent upon divalent cations, with 20 mM Mg2+ being optimal, and replacement of CTP with other nucleotide 5′-triphosphates did not support activity. Under the conditions tested, M. tuberculosis IspD had Km values of 58.5 μM for MEP and 53.2 μM for CTP. Calculated kcat and kcat/Km values were 0.72 min−1 and 12.3 mM−1 min−1 for MEP and 1.0 min−1 and 18.8 mM−1 min−1 for CTP, respectively
    corecore