179 research outputs found

    Use of threshold parameter variation for tropical cyclone tracking

    Get PDF
    Assessing the capacity of numerical models to produce viable tropical cyclones, as well as assessing the climatological behavior of simulated tropical cyclones, requires an objective tracking method. These make use of parameter thresholds to determine whether a detected feature, such as a vorticity maximum or a warm core, is strong enough to indicate a tropical cyclone. The choice of parameter thresholds is generally subjective. This study proposes and assesses the parallel use of many threshold parameter combinations, combining a number of weaker and stronger values. The tracking algorithm succeeds in tracking tropical cyclones within the model data, beginning at their aggregation stage or shortly thereafter and ending when they interact strongly with extratropical flow and transition into extratropical cyclones or when their warm core decays. The sensitivity of accumulated cyclone energy to tracking errors is assessed. Tracking errors include the faulty initial detection and termination of valid tropical cyclones and systems falsely identified as tropical cyclones. They are found to not significantly impact the accumulated cyclone energy. Thus, the tracking algorithm produces an adequate estimate of the accumulated cyclone energy within the underlying data.</p

    Crossover from thermal hopping to quantum tunneling in Mn_{12}Ac

    Full text link
    The crossover from thermal hopping to quantum tunneling is studied. We show that the decay rate Γ\Gamma with dissipation can accurately be determined near the crossover temperature. Besides considering the Wentzel-Kramers-Brillouin (WKB) exponent, we also calculate contribution of the fluctuation modes around the saddle point and give an extended account of a previous study of crossover region. We deal with two dangerous fluctuation modes whose contribution can't be calculated by the steepest descent method and show that higher order couplings between the two dangerous modes need to be taken into considerations. At last the crossover from thermal hopping to quantum tunneling in the molecular magnet Mn_{12}Ac is studied.Comment: 10 pages, 3 figure

    Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor

    Full text link
    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.Comment: RevTeX, 4 pages, 1 figure. Submitted to Phys. Rev. Let

    Berry's phase and Quantum Dynamics of Ferromagnetic Solitons

    Full text link
    We study spin parity effects and the quantum propagation of solitons (Bloch walls) in quasi-one dimensional ferromagnets. Within a coherent state path integral approach we derive a quantum field theory for nonuniform spin configurations. The effective action for the soliton position is shown to contain a gauge potential due to the Berry phase and a damping term caused by the interaction between soliton and spin waves. For temperatures below the anisotropy gap this dissipation reduces to a pure soliton mass renormalization. The gauge potential strongly affects the quantum dynamics of the soliton in a periodic lattice or pinning potential. For half-integer spin, destructive interference between soliton states of opposite chirality suppresses nearest neighbor hopping. Thus the Brillouin zone is halved, and for small mixing of the chiralities the dispersion reveals a surprising dynamical correlation: Two subsequent band minima belong to different chirality states of the soliton. For integer spin, the Berry phase is inoperative and a simple tight-binding dispersion is obtained. Finally it is shown that external fields can be used to interpolate continuously between the Bloch wall dispersions for half-integer and integer spin.Comment: 20 pages, RevTex 3.0 (twocolumn), to appear in Phys. Rev. B 53, 3237 (1996), 4 PS figures available upon reques

    Leptogenesis with Heavy Majorana Neutrinos Reexamined

    Get PDF
    The mass term for Majorana neutrinos explicitly violates lepton number. Several authors have used this fact to create a lepton asymmetry in the universe by considering CP violating effects in the one loop self-energy correction for the decaying heavy Majorana neutrino. We compare and comment on the different approaches used to calculate the lepton asymmetry including those using an effective Hamiltonian and resummed propagators. We also recalculate the asymmetry in the small mass difference limit.Comment: 16 pages, LaTex, 1 figure included. 2 footnotes and 1 reference adde

    Quantum-Classical Transition of the Escape Rate of a Uniaxial Spin System in an Arbitrarily Directed Field

    Full text link
    The escape rate \Gamma of the large-spin model described by the Hamiltonian H = -DS_z^2 - H_zS_z - H_xS_x is investigated with the help of the mapping onto a particle moving in a double-well potential U(x). The transition-state method yields Γ\Gamma in the moderate-damping case as a Boltzmann average of the quantum transition probabilities. We have shown that the transition from the classical to quantum regimes with lowering temperature is of the first order (d\Gamma/dT discontinuous at the transition temperature T_0) for h_x below the phase boundary line h_x=h_{xc}(h_z), where h_{x,z}\equiv H_{x,z}/(2SD), and of the second order above this line. In the unbiased case (H_z=0) the result is h_{xc}(0)=1/4, i.e., one fourth of the metastability boundary h_{xm}=1, at which the barrier disappears. In the strongly biased limit \delta\equiv 1-h_z << 1, one has h_{xc} \cong (2/3)^{3/4}(\sqrt{3}-\sqrt{2})\delta^{3/2}\cong 0.2345 \delta^{3/2}, which is about one half of the boundary value h_{xm} \cong (2\delta/3)^{3/2} \cong 0.5443 \delta^{3/2}.The latter case is relevant for experiments on small magnetic particles, where the barrier should be lowered to achieve measurable quantum escape rates.Comment: 17 PR pages, 16 figures; published versio

    A systematic review of attitudes, anxiety, acceptance, and trust towards social robots

    Get PDF
    As social robots become more common, there is a need to understand how people perceive and interact with such technology. This systematic review seeks to estimate people’s attitudes toward, trust in, anxiety associated with, and acceptance of social robots; as well as factors that are associated with these beliefs. Ninety-seven studies were identified with a combined sample of over 13,000 participants and a standardized score was computed for each in order to represent the valence (positive, negative, or neutral) and magnitude (on a scale from 1 to − 1) of people’s beliefs about robots. Potential moderating factors such as the robots’ domain of application and design, the type of exposure to the robot, and the characteristics of potential users were also investigated. The findings suggest that people generally have positive attitudes towards social robots and are willing to interact with them. This finding may challenge some of the existing doubt surrounding the adoption of robotics in social domains of application but more research is needed to fully understand the factors that influence attitudes

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM (-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
    • …
    corecore