9 research outputs found
Evaluation of the Pituitary Function with Insulin Tolerance (Hypoglycaemia) Testing: Are There Any Differences Using Insulin Lispro Compared to Regular Insulin?
Clinical and Functional Characteristics of the Human Arg59Ter Insulin-Like Growth Factor I Receptor (IGF1R) Mutation: Implications for a Gene Dosage Effect of the Human IGF1R
The Insulin-like Growth Factor (IGF)-I E-Peptides Modulate Cell Entry of the Mature IGF-I Protein
Insulin-like growth factor (IGF)-I is a critical protein for cell development and growth. Alternative splicing of the igf1 gene gives rise to multiple isoforms. In rodents, proIGF-IA and proIGF-IB have different carboxy-terminal extensions called the E-peptides (EA and EB) and upon further posttranslational processing, produce the identical mature IGF-I protein. Rodent EB has been reported to have mitogenic and motogenic effects independent of IGF-I. However, effects of EA or EB on mature IGF-I, or whether proIGF-IA and proIGF-IB have different properties, have not been addressed. To determine whether the presence of EA or EB affected the distribution and stability of mature IGF-I protein, transient transfections of cDNAs encoding murine IGF-IA, IGF-IB, and mature IGF-I were performed in C2C12 cells, a skeletal muscle cell line. IGF-I secretion was measured by enzyme-linked immunosorbent assay of the media, and did not differ between expression of proIGF-IA, proIGF-IB, or mature IGF-I expression. Next, epitope-tagged constructs were transfected to determine cellular distribution of IGF-I, EA, and EB in the cells throughout the culture. IGF-I was detected in significantly fewer nontransfected cells in cultures transfected with mature IGF-I compared with transfection of proIGF-IA or proIGF-IB. These results demonstrate that EA and EB are not required for IGF-I secretion but that they increase cell entry of IGF-I from the media. This study provides evidence that the EA and EB may modulate IGF-I in addition to having independent activity
Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling
Insulin and insulin-like growth factor 1 (IGF-1) play important roles in adipocyte differentiation, glucose tolerance and insulin sensitivity. Here, to assess how these pathways can compensate for each other, we created mice with a double tissue-specific knockout of insulin and IGF-1 receptors to eliminate all insulin/IGF-1 signaling in fat. These FIGIRKO mice had markedly decreased white and brown fat mass and were completely resistant to high fat diet (HFD) induced obesity and age- and HFD-induced glucose intolerance. Energy expenditure was increased in FIGIRKO mice despite a >85% reduction in brown fat mass. However, FIGIRKO mice were unable to maintain body temperature when placed at 4°C. Brown fat activity was markedly decreased in FIGIRKO mice but was responsive to β3-receptor stimulation. Thus, insulin/IGF-1 signaling has a crucial role in the control of brown and white fat development, and, when disrupted, leads to defective thermogenesis and a paradoxical increase in basal metabolic rate
The IGF Pathway Regulates ERα through a S6K1-Dependent Mechanism in Breast Cancer Cells
In estrogen receptor (ER) positive breast cancer cells, insulin-like growth factor signaling activates S6K1 to initiate ER-mediated gene transcription and cell growth
Brown Fat Determination and Development from Muscle Precursor Cells by Novel Action of Bone Morphogenetic Protein 6
Brown adipose tissue (BAT) plays a pivotal role in promoting energy expenditure by the virtue of uncoupling protein-1 (UCP-1) that differentiates BAT from its energy storing white adipose tissue (WAT) counterpart. The clinical implication of “classical” BAT (originates from Myf5 positive myoblastic lineage) or the “beige” fat (originates through trans-differentiation of WAT) activation in improving metabolic parameters is now becoming apparent. However, the inducers and endogenous molecular determinants that govern the lineage commitment and differentiation of classical BAT remain obscure. We report here that in the absence of any forced gene expression, stimulation with bone morphogenetic protein 6 (BMP6) induces brown fat differentiation from skeletal muscle precursor cells of murine and human origins. Through a comprehensive transcriptional profiling approach, we have discovered that two days of BMP6 stimulation in C2C12 myoblast cells is sufficient to induce genes characteristic of brown preadipocytes. This developmental switch is modulated in part by newly identified regulators, Optineurin (Optn) and Cyclooxygenase-2 (Cox2). Furthermore, pathway analyses using the Causal Reasoning Engine (CRE) identified additional potential causal drivers of this BMP6 induced commitment switch. Subsequent analyses to decipher key pathway that facilitates terminal differentiation of these BMP6 primed cells identified a key role for Insulin Like Growth Factor-1 Receptor (IGF-1R). Collectively these data highlight a therapeutically innovative role for BMP6 by providing a means to enhance the amount of myogenic lineage derived brown fat
Insulin-Like Growth Factor-1 Receptor Is Differentially Distributed in Developing Cerebellar Cortex of Rats Born to Diabetic Mothers
The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus
Insulin analogs: Assessment of insulin mitogenicity and IGF-I activity.
The metabolic activity of insulin has been studied extensively in vitro and in vivo, based on the initial assessment of insulin receptor affinity, followed by methods to estimate the metabolic activity in vitro. These estimates provide some guidance about the biological activity which will be found in vivo; they need to be confirmed and supplemented by testing the glucose-lowering activity in animals (mice, rats, dogs, pigs). The biological effects (hypoglycemic activity) are related to the direct activation of the insulin receptor and subsequent signaling through intracellular mechanisms. The second group of biological effects is related to cell proliferation (mitogenic activity), which may be mediated by the insulin receptor, by the IGF-I receptor, and by hybrids of the two receptors. The evaluation of the relevance of mitogenicity estimates may be performed in in vitro and in vivo. One approach is cell proliferation in benign and malignant cell lines, for example, on mammary epithelial cell lines MCF-10 and MCF-7 (Milazzo et al. 1997)
