205 research outputs found

    Ion induced weight loss and thermal gravimetric analysis of ion-irradiated poly-vinyl formal

    Get PDF

    Mass spectrometric comparison of swift heavy ion-induced and anaerobic thermal degradation of polymers

    Get PDF
    The study of polymers irradiated by highly energetic ions and the resulting radiation-induced degradation is of major importance for space and particle accelerator applications. The mechanism of ion-induced molecular fragmentation of polyethylene, polyethyleneimine and polyamide was investigated by means of mass spectrometry and infrared spectroscopy. The results show that the introduction of nitrogen and oxygen into the polymer influences the stability rendering aliphatic polymers with heteroatoms less stable. A comparison to thermal decomposition data from literature reveals that ion-induced degradation is different in its bond fracture mechanism. While thermal degradation starts at the weakest bond, which is usually the carbon-heteroatom bond, energetic ion irradiation leads in the first step to scission of all types of bonds creating smaller molecular fragments. This is due to the localized extreme energy input under non-equilibrium conditions when the ions transfer kinetic energy onto electrons. These findings are of relevance for the choice of polymers for long-term application in both space and accelerator facilities.We would like to thank the GSI for financial support and the material research group at GSI for given advice

    Dielectric strength of two fiber reinforced plastics irradiated with heavy ions

    Get PDF

    Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with γ\gamma Beams of High Intensity and Large Brilliance

    Full text link
    We study the production of radioisotopes for nuclear medicine in (γ,xn+yp)(\gamma,x{\rm n}+y{\rm p}) photonuclear reactions or (γ,γ\gamma,\gamma') photoexcitation reactions with high flux [(1013101510^{13}-10^{15})γ\gamma/s], small diameter (100μ\sim (100 \, \mum)2)^2 and small band width (ΔE/E103104\Delta E/E \approx 10^{-3}-10^{-4}) γ\gamma beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,xxn+y + yp) reactions with (ion=p,d,α\alpha) from particle accelerators like cyclotrons and (n,γ\gamma) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ\gamma beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). (γ,γ)(\gamma,\gamma') isomer production via specially selected γ\gamma cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ\gamma beams allow to produce certain radioisotopes, e.g. 47^{47}Sc, 44^{44}Ti, 67^{67}Cu, 103^{103}Pd, 117m^{117m}Sn, 169^{169}Er, 195m^{195m}Pt or 225^{225}Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example 195m^{195m}Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like 47^{47}Sc, 67^{67}Cu and 225^{225}Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.Comment: submitted to Appl. Phys.

    Immunohistochemical discrimination of wild-type EGFR from EGFRvIII in fixed tumour specimens using anti-EGFR mAbs ICR9 and ICR10

    Get PDF
    Background:The human epidermal growth factor receptor (EGFR) is an important therapeutic target in oncology, and three different types of EGFR inhibitors have been approved for the treatment of cancer patients. However, there has been no clear association between the expression levels of EGFR protein in the tumours determined by the FDA-approved EGFR PharmDx kit (Dako) or other standard anti-EGFR antibodies and the response to the EGFR inhibitors.Method:In this study, we investigated the potential of our anti-EGFR monoclonal antibodies (mAbs; ICR9, ICR10, ICR16) for immunohistochemical diagnosis of wild-type EGFR and/or the type-III deletion mutant form of EGFR (EGFRvIII) in formalin-fixed, paraffin-embedded human tumour specimens.Results:We found that the anti-EGFR mAb in the EGFR PharmDx kit stained both wild-type and EGFRvIII-expressing cells in formalin-fixed, paraffin-embedded sections. This pattern of EGFR immunostaining was also found with our anti-EGFR mAb ICR16. In contrast, mAbs ICR10 and ICR9 were specific for the wild-type EGFR.Conclusion:We conclude that mAbs ICR9 and ICR10 are ideal tools for investigating the expression patterns of wild-type EGFR protein in tumour specimens using immunohistochemistry, and to determine their prognostic significance, as well as predictive value for response to therapy with EGFR antibodies.British Journal of Cancer advance online publication, 7 February 2012; doi:10.1038/bjc.2012.27 www.bjcancer.com

    About the first experiment at JINR nuclotron deuteron beam with energy 2.52 gev on investigation of transmutation of I-129, NP-237, PU-238 and PU-239 in the field of neutrons generated in pbtarget with U-blanket

    Get PDF
    The experiment described in this communication is a part of the scientific program „Investigations of physical aspects of electronuclear method of energy production and transmutation of radioactive waste of atomic energetic using relativistic beams from the JINR Synchrophasotron/Nuclotron“ - the project „Energy plus Transmutation“. The performing of the first experiment at deuteron beam with energy 2.52 GeV at the electronuclear setup which consists of Pb-target with U-blanket (206.4 kg of natural uranium) and transmutation samples and its preliminary results are described. The hermetic samples of isotopes of I-129, Np-237, Pu-238 and Pu-239 which are produced in atomic reactors and industry setups which use nuclear materials and nuclear technologies were irradiated in the field of electronuclear neutrons produced in the Pbtarget surrounded with the U-blanket setup “Energy plus transmutation”. The estimations of its transmutations (radioecological aspect) were obtained in result of measurements of gamma activities of these samples. The information about space-energy distribution of neutrons in the volume of the Pb-target and the U-blanket was obtained with help of sets of activation threshold detectors (Al, V, Cu, Co, Y, In, I, Ta, Au, W, Bi and other), solid state nuclear track detectors, He-3 neutron detectors and nuclear emulsions

    Targeted therapies in colorectal cancer: an integrative view by PPPM

    Get PDF
    In developed countries, colorectal cancer (CRC) is the third most common malignancy, but it is the second most frequent cause of cancer-related death. Clinicians are still faced with numerous challenges in the treatment of this disease, and future approaches which target the molecular features of the disorder will be critical for success in this disease setting. Genetic analyses of many solid tumours have shown that up to 100 protein-encoding genes are mutated. Within CRC, numerous genetic alterations have been identified in a number of pathways. Therefore, understanding the molecular pathology of CRC may present information on potential routes for treatment and may also provide valuable prognostic information. This will be particularly pertinent for molecularly targeted treatments, such as anti-vascular endothelial growth factor therapies and anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapy. KRAS and BRAF mutations have been shown to predict response to anti-EGFR therapy. As EGFR can also signal via the phosphatidylinositol 3-kinase (PI3K) kinase pathway, there is considerable interest in the potential roles of members of this pathway (such as PI3K and PTEN) in predicting treatment response. Therefore, a combined approach of new techniques that allow identification of these biomarkers alongside interdisciplinary approaches to the treatment of advanced CRC will aid in the treatment decision-making process and may also serve to guide future therapeutic approaches

    Experimental simulation of radiation damage of polymers in space applications by cosmic-ray-type high energy heavy ions and the resulting changes in optical properties

    No full text
    Devices operating in space, e.g. in satellites, are being hit by cosmic rays. These include so-called HZE-ions, with High mass (Z) and energy (E). These highly energetic heavy ions penetrate deeply into the materials and deposit a large amount of energy, typically several keV per nm range. Serious damage is created. In space vehicles, polymers are used which are degraded under ion bombardment. HZE ion irradiation can experimentally be simulated in large scale accelerators. In the present study, the radiation damage of aliphatic vinyl- and fluoro-polymers by heavy ions with energies in the GeV range is described. The ions cause bond scission and create volatile small molecular species, leading to considerable mass loss of the polymers. Since hydrogen, oxygen and fluorine-containing molecules are created and these elements are depleted, the remaining material is carbon-richer than the original polymers and contains conjugated CC double bonds. This process is investigated by measuring the optical band gap with UV-Vis absorption spectrometry as a function of ion fluence. The results show how the optical band gaps shift from the UV into the Vis region upon ion irradiation for the different polymers
    corecore