60 research outputs found

    Multichannel Detrended Fluctuation Analysis Reveals Synchronized Patterns of Spontaneous Spinal Activity in Anesthetized Cats

    Get PDF
    The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA- mean = 1.040.09) or simultaneously from several lumbar segments (mDFA- mean = 1.010.06), where  = 0.5 indicates randomness while 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA- = 0.992 as compared to initial conditions mDFA- = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA- = 0.924). In contrast to the classical methods, such as correlation and coherence quantification that define a relation between two sets of data, the mDFA method properly reveals the synchronization of multiple groups of neurons in several segments of the spinal cord. This method is envisaged as a useful tool to characterize the structure of higher order ensembles of cord dorsum spontaneous potentials after spinal cord or peripheral nerve lesions

    Hysteresis in Pressure-Driven DNA Denaturation

    Get PDF
    In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue

    Violation and Transcending: Ethos and Counterculture in the Rock

    No full text
    Tema del mesEstablecer una definición precisa acerca de cuáles son las características que han distinguido al rock como movimiento cultural, así como su permanencia y evolución, no resulta sencillo. En este artículo se realiza una propuesta sobre los elementos que definen al ethos de este movimiento cultural, fundamentalmente una ruptura con lo establecido no sólo en los valores externos a éste, sino incluso con los propios valores en el tiempo. Así, se vislumbra al rock como un movimiento en el que la trascendencia se alcanza a través de la transgresiónOutlining a detailed definition about the main features that have distinguished Rock as a cultural movement, as well as its permanence and evolution is not an easy task. In this paper it will present a proposal on what are the elements defining the Ethos of this cultural movement, consisting fundamentally on the rupture with the socially established values, not only outside the movement but also with its own values through time. We visualize Rock as a movement in which trascendency is attained through transgressio

    Transcriptional Network Architecture of Breast Cancer Molecular Subtypes

    No full text
    Breast cancer heterogeneity is evident at the clinical, histological and molecular level. High throughput technologies allowed the identification of intrinsic subtypes that capture transcriptional differences among tumors. A remaining question is whether said differences are associated to a particular transcriptional program which involves different connections between the same molecules. In other words, whether particular transcriptional network architectures can be linked to specific phenotypes.In this work we infer, construct and analyze transcriptional networks from whole-genome gene expression microarrays, by using an information theory approach. We use 493 samples of primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue (61 samples) is also inferred and analyzed.Transcriptional networks present particular architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We find substantial differences between the non-tumor network and those networks inferred from cancer samples, in both structure and gene composition. More importantly, we find specific network architectural features associated to each breast cancer subtype. Based on breast cancer networks' centrality, we identify genes previously associated to the disease, either, generally (i.e. CNR2) or to a particular subtype (such as LCK). Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in transcriptional networks with subtype-specific relevance.With this approach we observe architectural differences between cancer and non-cancer at network level, as well as differences between cancer subtype networks which might be associated with breast cancer heterogeneity. The centrality measures of these networks allow us to identify genes with potential biomedical implications to breast cancer

    Information-theoretical analysis of gene expression data to infer transcriptional interactions

    No full text
    The majority of human diseases are related with the dynamic interaction of many genes and their products as well as environmental constraints. Cancer (and breast cancer in particular) is a paradigmatic example of such complex behavior. Since gene regulation is a non-equilibrium process, the inference and analysis of such phenomena could be done following the tenets of non-equilibrium physics. The traditional programme in statistical mechanics consists in inferring the joint probability distribution for either microscopic states (equilibrium) or mesoscopic-states (non-equilibrium), given a model for the particle interactions (e.g. the potentials). An inverse problem in statistical mechanics, in the other hand, is based on considering a realization of the probability distribution of micro- or meso-states and used it to infer the interaction potentials between particles. This is the approach taken in what follows. We analyzed 261 whole-genome gene expression experiments in breast cancer patients, and by means of an information-theoretical analysis, we deconvolute the associated set of transcriptional interactions, i.e. we discover a set of fundamental biochemical reactions related to this pathology. By doing this, we showed how to apply the tools of non-linear statistical physics to generate hypothesis to be tested on clinical and biochemical settings in relation to cancer phenomenology
    • …
    corecore