63 research outputs found

    An X-ray variable absorber within the Broad Line Region in Fairall 51

    Full text link
    Fairall 51 is a polar-scattered Seyfert 1 galaxy, a type of active galaxies believed to represent a bridge between unobscured type-1 and obscured type-2 objects. Fairall 51 has shown complex and variable X-ray absorption but only little is known about its origin. In our research, we observed Fairall 51 with the X-ray satellite Suzaku in order to constrain a characteristic time-scale of its variability. We performed timing and spectral analysis of four observations separated by 1.5, 2 and 5.5 day intervals. We found that the 0.5-50 keV broadband X-ray spectra are dominated by a primary power-law emission (with the photon index ~ 2). This emission is affected by at least three absorbers with different ionisations (log(xi) ~ 1-4). The spectrum is further shaped by a reprocessed emission, possibly coming from two regions -- the accretion disc and a more distant scattering region. The accretion disc emission is smeared by the relativistic effects, from which we measured the spin of the black hole as a ~ 0.8 (+-0.2). We found that most of the spectral variability can be attributed to the least ionised absorber whose column density changed by a factor of two between the first (highest-flux) and the last (lowest-flux) observation. A week-long scale of the variability indicates that the absorber is located at the distance ~ 0.05 pc from the centre, i.e., in the Broad Line Region.Comment: 12 pages, 9 figures, accepted to A&

    Active galaxy 4U 1344-60: did the relativistic line disappear?

    Full text link
    X-ray bright active galactic nuclei represent a unique astrophysical laboratory for studying accretion physics around super-massive black holes. 4U 1344-60 is a bright Seyfert galaxy which revealed relativistic reflection features in the archival XMM-Newton observation. We present the spectroscopic results of new data obtained with the Suzaku satellite and compare them with the previous XMM-Newton observation. The X-ray continuum of 4U 1344-60 can be well described by a power-law component with the photon index ~ 1.7 modified by a fully and a partially covering local absorbers. We measured a substantial decrease of the fraction of the partially absorbed radiation from around 45% in the XMM-Newton observation to less than 10% in the Suzaku observation while the power-law slope remains constant within uncertainties. The iron line in the Suzaku spectrum is relatively narrow, σ=(0.08±0.02)\sigma=(0.08 \pm 0.02) keV, without any suggestion for relativistic broadening. Regarding this, we interpret the iron line in the archival XMM-Newton spectrum as a narrow line of the same width plus an additional red-shifted emission around 6.1 keV. No evidence of the relativistic reflection is present in the Suzaku spectra. The detected red-shifted iron line during the XMM-Newton observation could be a temporary feature either due to locally enhanced emission or decreased ionisation in the innermost accretion flow.Comment: 10 pages, 11 figures, accepted to A&

    Accretion and Obscuration in Merger-Dominated Luminous Red Quasars

    Full text link
    We present an analysis of the X-ray properties 10 luminous, dust-reddened quasars from the FIRST-2MASS (F2M) survey based on new and archival Chandra observations. These systems are interpreted to be young, transitional objects predicted by merger-driven models of quasar/galaxy co-evolution. The sources have been well-studied from the optical through mid-infrared, have Eddington ratios above 0.1, and possess high-resolution imaging, most of which shows disturbed morphologies indicative of a recent or ongoing merger. When combined with previous X-ray studies of five other F2M red quasars, we find that the sources, especially those hosted by mergers, have moderate to high column densities (NH≃1022.5−23.5N_H \simeq 10^{22.5-23.5} cm−2^{-2}) and Eddington ratios high enough to enable radiation pressure to blow out the obscuring material. We confirm previous findings that red quasars have dust-to-gas ratios that are significantly lower than the value for the Milky Way's interstellar medium, especially when hosted by a merger. The dust-to-gas ratio for two red quasars that lack evidence for merging morphology is consistent with the Milky Way and they do not meet the radiative feedback conditions for blowout. These findings support the picture of quasar/galaxy co-evolution in which a merger results in feeding of and feedback from an AGN. We compare the F2M red quasars to other obscured and reddened quasar populations in the literature, finding that, although morphological information is lacking, nearly all such samples meet blowout conditions and exhibit outflow signatures suggestive of winds and feedback.Comment: Accepted for publication in MNRA

    X-ray spectroscopy of the z=6.4 quasar J1148+5251

    Full text link
    We present the 78-ks Chandra observations of the z=6.4z=6.4 quasar SDSS J1148+5251. The source is clearly detected in the energy range 0.3-7 keV with 42 counts (with a significance ≳9σ\gtrsim9\sigma). The X-ray spectrum is best-fitted by a power-law with photon index Γ=1.9\Gamma=1.9 absorbed by a gas column density of NH=2.0−1.5+2.0×1023 cm−2\rm N_{\rm H}=2.0^{+2.0}_{-1.5}\times10^{23}\,\rm cm^{-2}. We measure an intrinsic luminosity at 2-10 keV and 10-40 keV equal to ∼1.5×1045 erg s−1\sim 1.5\times 10^{45}~\rm erg~s^{-1}, comparable with luminous local and intermediate-redshift quasar properties. Moreover, the X-ray to optical power-law slope value (αOX=−1.76±0.14\alpha_{\rm OX}=-1.76\pm 0.14) of J1148 is consistent with the one found in quasars with similar rest-frame 2500 \AA ~luminosity (L2500∼1032 erg s−1L_{\rm 2500}\sim 10^{32}~\rm erg~s^{-1}\AA−1^{-1}). Then we use Chandra data to test a physically motivated model that computes the intrinsic X-ray flux emitted by a quasar starting from the properties of the powering black hole and assuming that X-ray emission is attenuated by intervening, metal-rich (Z≥Z⊙Z\geq \rm Z_{\odot}) molecular clouds distributed on ∼\simkpc scales in the host galaxy. Our analysis favors a black hole mass MBH∼3×109M⊙M_{\rm BH} \sim 3\times 10^9 \rm M_\odot and a molecular hydrogen mass MH2∼2×1010M⊙M_{\rm H_2}\sim 2\times 10^{10} \rm M_\odot, in good agreement with estimates obtained from previous studies. We finally discuss strengths and limits of our analysis.Comment: 9 pages, 3 figures, 1 table, MNRAS in pres

    Multiple AGN in the crowded field of the compact group SDSSJ0959+1259

    Get PDF
    We present a multi-wavelength study of a newly discovered compact group (CG), SDSS J0959+1259, based data from XMM-Newton, SDSS and the Calar Alto optical imager BUSCA. With a maximum velocity offset of 500 km s−1^{-1}, a mean redshift of 0.035, and a mean spatial extension of 480 kpc, this CG is exceptional in having the highest concentration of nuclear activity in the local Universe, established with a sensitivity limit LX>4×_{X}>4\times 1040^{40} erg s−1^{-1} in 2--10 keV band and R-band magnitude MR<−19M_R < -19. The group is composed of two type-2 Seyferts, one type-1 Seyfert, two LINERs and three star forming galaxies. Given the high X-ray luminosity of LINERs which reaches ∼1041\sim 10^{41} erg s−1^{-1}, it is likely that they are also accretion driven, bringing the number of active nuclei in this group to to 5 out of 8 (AGN fraction of 60\%). The distorted shape of one member of the CG suggests that strong interactions are taking place among its galaxies through tidal forces. Therefore, this system represents a case study for physical mechanisms that trigger nuclear activity and star formation in CGs.Comment: 8 pages, 4 figures and 4 tables. Accepted for publication in MNRA
    • …
    corecore