17 research outputs found
The geodynamics of the Mediterranean in the framework of the global asymmetric Earth: evidences from seismological and geophysical methods
2011/2012La tesi presenta l'estensione ed il raffinamento del modello cellulare tridimensionale della crosta e del mantello superiore dell'area centrale mediterranea e propone una interpretazione geodinamica del suddetto modello nel contesto della asimmetria globale della tettonica delle placche. Il modello cellulare è espresso in termini di velocità delle onde di taglio (VS) e di spessore e densità degli strati, fino ad una profondità di 350 chilometri. Tali proprietà caratterizzanti gli strati sono ottenute mediante avanzate tecniche di inversione non lineare, quali l'inversione con il metodo hedgehog di curve di dispersione delle velocità di gruppo e di fase per la determinazione delle VS e l'inversione non lineare di dati gravimetrici mediante il metodo GRAV3D.
Il metodo hedgehog consente la definizione di un insieme di modelli strutturali senza fare ricorso ad alcun modello a priori, considerando la VS e lo spessore degli strati come variabili indipendenti.
Data la ben nota non unicità del problema inverso, la soluzione rappresentativa di ogni cella è determinata per mezzo dell'applicazione di algoritmi di ottimizzazione ed è inoltre validata alla luce di dati geologici, geofisici e petrologici indipendenti, in particolare la distribuzione della sismicità , sia passata, ottenuta dai bollettini internazionali, sia presente, ottenuta mediante inversione non lineare dei meccanismi focali.
Le proprietĂ delle sorgenti sismiche sono state studiate utilizzando la metodologia INPAR per l'inversione di forme d'onda complete di periodo relativamente corto (fino a 10 s), che permette la determinazione realistica del tensore momento sismico in particolare per eventi poco profondi. Questa metodologia si rivela particolarmente utile nelle aree caratterizzate da eventi di moderata magnitudo, dove le tecniche globali standard non possono in genere venire applicate. Il metodo INPAR fornisce inoltre risultati attendibili anche quando sono disponibili soltanto pochi segnali registrati da un numero limitato di stazioni.
L'inversione gravimetrica è stata vincolata alla geometria degli strati definita dal modello VS ottenuto dai dati sismologici. Ai dati gravimetrici di input è applicato un rumore gaussiano con ampiezza di 1,5 mGal. Al fine di non imporre a priori l’esistenza di decrementi della densità al crescere della profondità , il modello di densità di riferimento utilizzato come input dell’inversione consiste, per tutte le celle, in un modello di densità crescente o costante con la profondità , che soddisfa, entro i valori di incertezza, la relazione di Nafe-Drake. Le anomalie ottenute dal processo di inversione gravimetrica vengono poi trasformate in valori assoluti di densità riferiti al modello di riferimento. Il modello tridimensionale così ottenuto, analizzato e discusso lungo sezioni perpendicolari ai complessi orogenetici dell'area di studio (Appennini, Alpi, Dinaridi) conferma l'esistenza di profonde asimmetrie strutturali tra le subduzioni est e ovest-vergenti e la presenza di litosfera sottile nell'area estensiva del bacino Tirrenico, che sovrasta una zona a bassa velocità (LVZ) indicativa della presenza di vaste aree magmatiche o di fusione parziale, probabile sede di un flusso del mantello verso est. Tale flusso è possibile causa dell'asimmetria riscontrata tra la subduzione appenninica, quasi verticale, e la subduzione alpina e dinarica, caratterizzata da un basso angolo di immersione.
Ulteriore ed inaspettata caratteristica del modello è rappresentata dal fatto che la litosfera in subduzione risulta essere meno densa del mantello circostante. Tale risultato apre la strada a nuove interpretazioni riguardo alla dinamica delle zone di subduzione, che nella sua descrizione ortodossa vede come fattore determinante il fenomeno dello slab pull.
La tesi si articola in un capitolo introduttivo iniziale dove viene esposta l'ipotesi della asimmetria della tettonica delle placche, con particolare riferimento alle evidenze in area mediterranea, mentre nei capitoli successivi vengono presentati i risultati del modello in VS e densitĂ ottenuto a differenti scale risolutive. Tali risultati sono poi discussi, con l'ausilio di sezioni interpretative lungo profili significativi, alla luce di evidenze indipendenti con l'intento di delineare un quadro geodinamico coerente dell'area di studio.
In Appendice, unitamente alla presentazione dei risultati tabulati, sono approfondite alcune tematiche particolari.This thesis presents the extension and refinement of the 3D cellular model of the crust and upper mantle of the central Mediterranean and offers a geodynamic interpretation of the obtained model in the framework of the global asymmetry of plate tectonics. The cellular model is expressed in terms of shear waves velocity (VS), thickness and density of the layers, to a depth of 350 kilometers. These physical properties are obtained by means of advanced non-linear inversion techniques, such as the hedgehog inversion method of group and phase velocity dispersion curves for the determination of VS and the non-linear inversion of gravity data by means of the method GRAV3D.
The hedgehog method allows the definition of a set of structural models without resorting to any a priori model, considering the VS and the thickness of the layers as independent variables.
Given the well-known non-uniqueness of the inverse problem, the representative solution of each cell is determined through the application of optimization algorithms and is also validated with the use of independent geological, geophysical and petrological data, e.g. the distribution of historical and recent seismicity, obtained from international bulletins and by non-linear inversion of focal mechanisms.
The properties of the seismic sources have been studied using the INPAR methodology for the inversion of complete waveforms at relatively short period (as short as 10 s), that allows the determination of the realistic seismic moment tensor in particular for shallow events. This methodology is very useful in areas of moderate magnitude events, where generally the global standard techniques can not be applied. The INPAR method also provides reliable results even using few signals recorded by a limited number of stations.
The gravimetric inversion has been constrained to the geometry of the layers defined by the VS model obtained from the inversion of seismological data. A Gaussian noise with an amplitude of 1.5 mGal has been applied to the gravimetric data input. In order not to impose a priori the existence of the density decreases with increasing depth, the reference density model used in the inversion consists, for all the cells, in a model of increasing or at least constant density with depth, which satisfies, within the range of uncertainty, the Nafe-Drake relation. The density anomalies obtained by the gravimetric inversion process are then transformed into absolute values relative to the reference model. The three-dimensional model thus obtained, analysed and discussed along selected sections perpendicular to the orogenic complexes of the study area (Apennines, Alps, Dinarides) confirms the existence of deep structural asymmetries between E- and W-directed subductions and the presence of a thin lithosphere in the extensional area of the Tyrrhenian basin, which overlies a low velocity zone (LVZ) indicative of the presence of large amount of magma or partial melting, where an eastward mantle flow is likely present. This flow possibly causes the asymmetry found between the almost vertical Apenninic subduction and the Alpine-Dinaric subduction, which is in turn characterized by a low dip angle.
Further and unexpected feature of the model is the fact that the subducting lithosphere turns out to be less dense than the surrounding mantle. This result opens the way to new interpretations in subductions dynamics, which in its common description relies on the slab pull phenomenon as a first order acting force.
The thesis consists of an introduction where the hypothesis of the global asymmetry of plate tectonics is addressed, with particular attention to the Mediterranean context, while in the Chapters 2, 3 and 4 are presented the VS and density models obtained at different resolution scales. These results are then discussed in the Chapter 5, with the aid of interpretive sections along significant profiles, in the light of the validation though independent data, aiming to establish a coherent geodynamic picture of the study area.
In the Appendixes, together with the presentation of the tabulated results, some particular topics are discussed.XXV Ciclo198
New distributional data for the Mediterranean medicinal leech Hirudo verbana Carena, 1820 (Hirudinea, Hirudinidae) in Italy, with a note on its feeding on amphibians
Scarce data are currently available about the distribution of the Mediterranean medicinal leech Hirudo verbana in Italy, and most of the known occurrence localities are based on records collected in the nineteenth and the first half of the twentieth century, which were not confirmed in the last decades, mostly due to a lack of surveys. Accordingly, the available knowledge on the distribution of the species is far from being updated and representative, although a significant negative trend of H. verbana throughout the country is supposed. The lack of sound distribution data is a significant shortfall, which hinders the implementation of the monitoring of the species as required by the Article 17 of the “Habitats Directive” on the species of Union concern. To provide recent, validated distributional data for the Mediterranean medicinal leech in Italy to be used as baseline data for further surveys and monitoring, we present herein a set of unpublished observations collected in the last decades in peninsular Italy, Sicily, and Sardinia. Moreover, we report observation of H. verbana feeding on amphibians, a feeding habit to date poorly documented for the Mediterranean medicinal leech. Based on both published and novel data, H. verbana is characterised by a large but fragmented distribution in Italy. Therefore, dedicated monitoring programs and the collection of validated occasional observations are highly desirable to get a clearer picture of the real distribution of the species
A geophysical perspective on the lithosphere-asthenosphere system from Periadriatic to the Himalayan areas: the contribution of gravimetry
The structure of the lithosphere-asthenosphere system as imaged from the complementary inversion of seismological and gravimetric data can provide significant clues to understand the processes of orogeny and cratonization and to better formulate the theory of plate tectonics within a sound geodynamic context.
In this paper, we review some studies sharing a common synergic methodology that uses the geometry of cellular shear-waves velocity models of the crust and uppermost mantle to constrain a 3D density model obtained by means of linear inversion of gravimetric data. These studies, which were applied to selected areas along an ideal stream running from the Periadriatic region to the Himalayas, despite having different resolution, show some basic common features in the density distribution of the upper mantle whose unveiling may be precluded to gravity models achieved by assuming velocity-density relationships.
In fact, one of the main conclusions of the discussed studies is that lithospheric slabs under the investigated orogenic belts, as identified by seismic waves velocity, are, as a rule, not marked by high density. This fact casts serious doubts about the effectiveness of slab-pull and confirms one of the key issues of polarized plate tectonics, mostly fuelled by tidal drag
Lithosphere density model in Italy: no hint for slab pull
The lithosphere\u2013asthenosphere system of the Italic region in terms of shear-velocity and density distribution with depth is suitable to investigate the geodynamic context of the region. The velocity structure is obtained through nonlinear inversion of dispersion curves compiled from surface wave tomography on cells 1\ub0
7 1\ub0 and a smoothing optimization method to choose the representative cellular model, whose layering is used as fixed (a priori) information to obtain a density model by means of linear inversion of gravimetric data. Seismicity and heat flow are used as independent constraints in outlining both the crustal and the seismic lid thickness; the nonlinear moment tensor inversion of recent damaging earthquakes allows some insight in the ongoing kinematic processes. Asymmetry between west-directed (Apennines) and east-directed (Alps, Dinarides) subductions is a robust feature of the velocity model, while density model reveals that slabs are not denser than the ambient mantle, thus supplies no evidence for slab pull
Stability of fault plane solutions for the major N-Italy seismic events in 2012
We propose a critical analysis of themoment tensor solutions of themajor seismic events that affected northern
Italy in 2012. Inverting fullwaveforms at regional distance using the non-linear method named INPAR, we investigate
period dependent resolution that affects in particular the solutions of shallowevents. This is mainly due to
the poor resolution of Mzx and Mzy components of the seismic tensor when inverting signals whose wavelengths
significantly exceed the source depth. As a consequence, instability affects both source depth and fault plane solution
retrieval, and spurious large Compensated Linear Vector Dipole components arise. The inversion
performed at cutoff periods shorter than 20 s reveals in many cases different details of the rupture process,
which are supported by independent geodynamical arguments. Thus we conclude that inversion of full waveforms
at cutoff period as short as possible should be preferred
An explosive component in a December 2020 Milan earthquake suggests outgassing of deeply recycled carbon
Carbon dragged at sub-arc depths and sequestered in the asthenospheric upper mantle during cold subduction is potentially released after millions of years during the breakup of continental plates. However, it is unclear whether these deep-carbon reservoirs can be locally remobilized on shorter-term timescales. Here we reveal the fate of carbon released during cold subduction by analyzing an anomalously deep earthquake in December 2020 in the lithospheric mantle beneath Milan (Italy), above a deep-carbon reservoir previously imaged in the mantle wedge by geophysical methods. We show that the earthquake source moment tensor includes a major explosive component that we ascribe to carbon-rich melt/fluid migration along upper-mantle shear zones and rapid release of about 17,000 tons of carbon dioxide when ascending melts exit the carbonate stability field. Our results underline the importance of carbon-rich melts at active continental margins for emission budgets and suggest their potential episodic contributions to atmospheric carbon dioxide
The lithosphere in Italy: structure and seismicity
We propose a structural model for the lithosphere-asthenosphere system for the Italic region by means of the S-wave velocity (VS) distribution with depth. To obtain the velocity structure the following methods are used in the sequence: frequency-time analysis (FTAN); 2D tomography (plotted on a grid 1°×1°); non-linear inversion; smoothing optimization method. The 3D VS structure (and its uncertainties) of the study region is assembled as a juxtaposition of the selected representative cellular models. The distribution of seismicity and heat flow is used as an independent constraint for the definition of the crustal and lithospheric thickness. The moment tensor inversion of recent damaging earthquakes which occurred in the Italic region is performed through a powerful non-linear technique and it is related to the different rheologic-mechanic properties of the crust and uppermost mantle. The obtained picture of the lithosphere-asthenosphere system for the Italic region confirms a mantle extremely vertically stratified and laterally strongly heterogeneous. The lateral variability in the mantle is interpreted in terms of subduction zones, slab dehydration, inherited mantle chemical anisotropies, asthenospheric upwellings, and so on. The western Alps and the Dinarides have slabs with low dip, whereas the Apennines show a steeper subduction. No evidence for any type of mantle plume is observed. The asymmetric expansion of the Tyrrhenian Sea, which may be interpreted as related to a relative eastward mantle flow with respect to the overlying lithosphere, is confirmed