17 research outputs found

    Supernovae data and perturbative deviation from homogeneity

    Full text link
    We show that a spherically symmetric perturbation of a dust dominated Ω=1\Omega=1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated, minor modifications and clarifications, matches published versio

    Back-reaction and effective acceleration in generic LTB dust models

    Full text link
    We provide a thorough examination of the conditions for the existence of back-reaction and an "effective" acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains, we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the boundary of every domain. Effective deceleration necessarily occurs in all domains in: (a) the asymptotic radial range of models converging to a FLRW background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial range of models converging to a FLRW background, (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v) domains near and/or intersecting a non-simultaneous big bang. All these scenarios occur in hyperbolic models with negative averaged and local spatial curvature, though scenarios (iv) and (v) are also possible in low density regions of a class of elliptic models in which local spatial curvature is negative but its average is positive. Rough numerical estimates between -0.003 and -0.5 were found for the effective deceleration parameter. While the existence of accelerating domains cannot be ruled out in models converging to an Einstein de Sitter background and in domains undergoing gravitational collapse, the conditions for this are very restrictive. The results obtained may provide important theoretical clues on the effects of back-reaction and averaging in more general non-spherical models.Comment: Final version accepted for publication in Classical and Quantum Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure

    Looking the void in the eyes - the kSZ effect in LTB models

    Get PDF
    As an alternative explanation of the dimming of distant supernovae it has recently been advocated that we live in a special place in the Universe near the centre of a large void described by a Lemaitre-Tolman-Bondi (LTB) metric. The Universe is no longer homogeneous and isotropic and the apparent late time acceleration is actually a consequence of spatial gradients in the metric. If we did not live close to the centre of the void, we would have observed a Cosmic Microwave Background (CMB) dipole much larger than that allowed by observations. Hence, until now it has been argued, for the model to be consistent with observations, that by coincidence we happen to live very close to the centre of the void or we are moving towards it. However, even if we are at the centre of the void, we can observe distant galaxy clusters, which are off-centre. In their frame of reference there should be a large CMB dipole, which manifests itself observationally for us as a kinematic Sunyaev-Zeldovich (kSZ) effect. kSZ observations give far stronger constraints on the LTB model compared to other observational probes such as Type Ia Supernovae, the CMB, and baryon acoustic oscillations. We show that current observations of only 9 clusters with large error bars already rule out LTB models with void sizes greater than approximately 1.5 Gpc and a significant underdensity, and that near future kSZ surveys like the Atacama Cosmology Telescope, South Pole Telescope, APEX telescope, or the Planck satellite will be able to strongly rule out or confirm LTB models with giga parsec sized voids. On the other hand, if the LTB model is confirmed by observations, a kSZ survey gives a unique possibility of directly reconstructing the expansion rate and underdensity profile of the void.Comment: 20 pages, 9 figures, submitted to JCA

    Weighed scalar averaging in LTB dust models, part I: statistical fluctuations and gravitational entropy

    Full text link
    We introduce a weighed scalar average formalism ("q-average") for the study of the theoretical properties and the dynamics of spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models models. The "q-scalars" that emerge by applying the q-averages to the density, Hubble expansion and spatial curvature (which are common to FLRW models) are directly expressible in terms of curvature and kinematic invariants and identically satisfy FLRW evolution laws without the back-reaction terms that characterize Buchert's average. The local and non-local fluctuations and perturbations with respect to the q-average convey the effects of inhomogeneity through the ratio of curvature and kinematic invariants and the magnitude of radial gradients. All curvature and kinematic proper tensors that characterize the models are expressible as irreducible algebraic expansions on the metric and 4-velocity, whose coefficients are the q-scalars and their linear and quadratic local fluctuations. All invariant contractions of these tensors are quadratic fluctuations, whose q-averages are directly and exactly related to statistical correlation moments of the density and Hubble expansion scalar. We explore the application of this formalism to a definition of a gravitational entropy functional proposed by Hosoya et al (2004 Phys. Rev. Lett. 92 141302). We show that a positive entropy production follows from a negative correlation between fluctuations of the density and Hubble scalar, providing a brief outline on its fulfillment in various LTB models and regions. While the q-average formalism is specially suited for LTB and Szekeres models, it may provide a valuable theoretical insight on the properties of scalar averaging in inhomogeneous spacetimes in general.Comment: 27 pages in IOP format, 1 figure. Matches version accepted for publication in Classical and Quantum Gravit

    Radial asymptotics of Lemaitre-Tolman-Bondi dust models

    Full text link
    We examine the radial asymptotic behavior of spherically symmetric Lemaitre-Tolman-Bondi dust models by looking at their covariant scalars along radial rays, which are spacelike geodesics parametrized by proper length \ell, orthogonal to the 4-velocity and to the orbits of SO(3). By introducing quasi-local scalars defined as integral functions along the rays, we obtain a complete and covariant representation of the models, leading to an initial value parametrization in which all scalars can be given by scaling laws depending on two metric scale factors and two basic initial value functions. Considering regular "open" LTB models whose space slices allow for a diverging \ell, we provide the conditions on the radial coordinate so that its asymptotic limit corresponds to the limit as \ell\to\infty. The "asymptotic state" is then defined as this limit, together with asymptotic series expansion around it, evaluated for all metric functions, covariant scalars (local and quasi-local) and their fluctuations. By looking at different sets of initial conditions, we examine and classify the asymptotic states of parabolic, hyperbolic and open elliptic models admitting a symmetry center. We show that in the radial direction the models can be asymptotic to any one of the following spacetimes: FLRW dust cosmologies with zero or negative spatial curvature, sections of Minkowski flat space (including Milne's space), sections of the Schwarzschild--Kruskal manifold or self--similar dust solutions.Comment: 44 pages (including a long appendix), 3 figures, IOP LaTeX style. Typos corrected and an important reference added. Accepted for publication in General Relativity and Gravitatio

    Averaging Robertson-Walker Cosmologies

    Full text link
    The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the Buchert averaging formalism to linear Robertson-Walker universes containing matter, radiation and dark energy and evaluate numerically the discrepancies between the assumed and the averaged behaviour, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h=0.701. For the LCDM concordance model, the backreaction is of the order of Omega_eff~4x10^-6, with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10^-8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state w_eff<-1/3 can be found for strongly phantom models.Comment: 18 pages, 11 figures, ReVTeX. Updated to version accepted by JCA

    Cosmological Backreaction from Perturbations

    Full text link
    We reformulate the averaged Einstein equations in a form suitable for use with Newtonian gauge linear perturbation theory and track the size of the modifications to standard Robertson-Walker evolution on the largest scales as a function of redshift for both Einstein de-Sitter and Lambda CDM cosmologies. In both cases the effective energy density arising from linear perturbations is of the order of 10^-5 the matter density, as would be expected, with an effective equation of state w ~ -1/19. Employing a modified Halofit code to extend our results to quasilinear scales, we find that, while larger, the deviations from Robertson-Walker behaviour remain of the order of 10^-5.Comment: 15 pages, 8 figures; replaced by version accepted by JCA

    Evolution of radial profiles in regular Lemaitre-Tolman-Bondi dust models

    Full text link
    We undertake a comprehensive and rigorous analytic study of the evolution of radial profiles of covariant scalars in regular Lemaitre-Tolman-Bondi dust models. We consider specifically the phenomenon of "profile inversions" in which an initial clump profile of density, spatial curvature or the expansion scalar, might evolve into a void profile (and vice versa). Previous work in the literature on models with density void profiles and/or allowing for density profile inversions is given full generalization, with some erroneous results corrected. We prove rigorously that if an evolution without shell crossings is assumed, then only the 'clump to void' inversion can occur in density profiles, and only in hyperbolic models or regions with negative spatial curvature. The profiles of spatial curvature follow similar patterns as those of the density, with 'clump to void' inversions only possible for hyperbolic models or regions. However, profiles of the expansion scalar are less restrictive, with profile inversions necessarily taking place in elliptic models. We also examine radial profiles in special LTB configurations: closed elliptic models, models with a simultaneous big bang singularity, as well as a locally collapsing elliptic region surrounded by an expanding hyperbolic background. The general analytic statements that we obtain allow for setting up the right initial conditions to construct fully regular LTB models with any specific qualitative requirements for the profiles of all scalars and their time evolution. The results presented can be very useful in guiding future numerical work on these models and in revising previous analytic work on all their applications.Comment: Final version to appear in Classical and Quantum Gravity. Readers eager to know the results and implications without having to go through the technical detail are recommended to go directly to the summary and discussion in the final section (section 11). Typos have been corrected and an important reference has been adde

    The effect of inhomogeneous expansion on the supernova observations

    Get PDF
    We consider an inhomogeneous but spherically symmetric Lemaitre-Tolman-Bondi model to demonstrate that spatial variations of the expansion rate can have a significant effect on the cosmological supernova observations. A model with no dark energy but a local Hubble parameter about 15% larger than its global value fits the supernova data better than the homogeneous model with the cosmological constant. The goodness of the fit is not sensitive to inhomogeneities in the present-day matter density, and our best fit model has Omega_M ~ 0.3, in agreement with galaxy surveys. We also compute the averaged expansion rate, defined by the Buchert equations, of the best fit model and show explicitly that there is no average acceleration.Comment: minor corrections to match the version published in JCA
    corecore