154 research outputs found

    The potential role of herpes simplex virus type 1 and neuroinflammation in the pathogenesis of Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disease affecting similar to 50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans

    Alpha-Herpesvirus Infection Induces the Formation of Nuclear Actin Filaments

    Get PDF
    Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process

    Long-term Cre-mediated retrograde tagging of neurons using a novel recombinant pseudorabies virus

    Get PDF
    Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV) for efficient and long-term genetic tagging of neurons based on their projection targets. By deleting IE180, the master transcriptional regulator in the PRV genome, we have produced a mutant virus capable of infection and transgene expression in neurons but unable to replicate in or spread from those neurons. IE180-null mutants showed no cytotoxicity, and infected neurons exhibited normal physiological function more than 45 days after infection, indicating the utility of these engineered viruses for chronic experiments. To enable rapid and convenient construction of novel IE180-null recombinants, we engineered a bacterial artificial chromosome (BAC) shuttle-vector system for moving new constructs into the PRV IE180-null genome. Using this system we generated an IE180-null recombinant virus expressing the site-specific recombinase Cre. This Cre-expressing virus (PRV-hSyn-Cre) efficiently and robustly infects neurons in vivo and activates transgene expression from Cre-dependent vectors in local and retrograde projecting populations of neurons in the mouse. We also generated an assortment of recombinant viruses expressing fluorescent proteins (mCherry, EGFP, ECFP). These viruses exhibit long-term labeling of neurons in vitro but transient labeling in vivo. Together these novel IE180-null PRV reagents expand the toolkit for targeted gene expression in the brain, facilitating functional dissection of neuronal circuits in vivo

    CRISPR/Cas9-constructed pseudorabies virus mutants reveal the importance of UL13 in alphaherpesvirus escape from genome silencing

    Get PDF
    Latent and recurrent productive infection of long-living cells, such as neurons, enables alphaherpesviruses to persist in their host populations. Still, the viral factors involved in these events remain largely obscure. Using a complementation assay in compartmented primary peripheral nervous system (PNS) neuronal cultures, we previously reported that productive replication of axonally delivered genomes is facilitated by pseudorabies virus (PRV) tegument proteins. Here, we sought to unravel the role of tegument protein UL13 in this escape from silencing. We first constructed four new PRV mutants in the virulent Becker strain using CRISPR/Cas9-mediated gene replacement: (i) PRV Becker defective for UL13 expression (PRV Delta UL13), (ii) PRV where UL13 is fused to eGFP (PRV UL13-eGFP), and two control viruses (iii and iv) PRV where VP16 is fused with mTurquoise at either the N terminus (PRV mTurq-VP16) or the C terminus (PRV VP16-mTurq). Live-cell imaging of PRV capsids showed efficient retrograde transport after axonal infection with PRV UL13-eGFP, although we did not detect dual-color particles. However, immunofluorescence staining of particles in mid-axons indicated that UL13 might be cotransported with PRV capsids in PNS axons. Superinfecting nerve cell bodies with UV-inactivated PRV DUL13 failed to efficiently promote escape from genome silencing compared to UV-PRV wild type and UV-PRV UL13-eGFP superinfection. However, UL13 does not act directly in the escape from genome silencing, as adeno-associated virus (AAV)-mediated UL13 expression in neuronal cell bodies was not sufficient to provoke escape from genome silencing. Based on this, we suggest that UL13 may contribute to initiation of productive infection through phosphorylation of other tegument proteins. IMPORTANCE Alphaherpesviruses have mastered various strategies to persist in an immunocompetent host, including the induction of latency and reactivation in peripheral nervous system (PNS) ganglia. We recently discovered that the molecular mechanism underlying escape from latency by the alphaherpesvirus pseudorabies virus (PRV) relies on a structural viral tegument protein. This study aimed at unravelling the role of tegument protein UL13 in PRV escape from latency. First, we confirmed the use of CRISPR/Cas9-mediated gene replacement as a versatile tool to modify the PRV genome. Next, we used our new set of viral mutants and AAV vectors to conclude the indirect role of UL13 in PRV escape from latency in primary neurons, along with its spatial localization during retrograde capsid transport in axons. Based on these findings, we speculate that UL13 phosphorylates one or more tegument proteins, thereby priming these putative proteins to induce escape from genome silencing

    Fluorescence-Based Monitoring of In Vivo Neural Activity Using a Circuit-Tracing Pseudorabies Virus

    Get PDF
    The study of coordinated activity in neuronal circuits has been challenging without a method to simultaneously report activity and connectivity. Here we present the first use of pseudorabies virus (PRV), which spreads through synaptically connected neurons, to express a fluorescent calcium indicator protein and monitor neuronal activity in a living animal. Fluorescence signals were proportional to action potential number and could reliably detect single action potentials in vitro. With two-photon imaging in vivo, we observed both spontaneous and stimulated activity in neurons of infected murine peripheral autonomic submandibular ganglia (SMG). We optically recorded the SMG response in the salivary circuit to direct electrical stimulation of the presynaptic axons and to physiologically relevant sensory stimulation of the oral cavity. During a time window of 48 hours after inoculation, few spontaneous transients occurred. By 72 hours, we identified more frequent and prolonged spontaneous calcium transients, suggestive of neuronal or tissue responses to infection that influence calcium signaling. Our work establishes in vivo investigation of physiological neuronal circuit activity and subsequent effects of infection with single cell resolution

    Are COVID-19 Vaccine Boosters Needed? The Science behind Boosters

    Full text link
    Waning vaccine-induced immunity coupled with the emergence of SARS-CoV-2 variants has led to increases in breakthrough infections, prompting consideration for vaccine booster doses. Boosters have been reported to be safe and increase SARS-CoV-2-specific neutralizing antibody levels, but how these doses impact the trajectory of the global pandemic and herd immunity is unknown. Information on immunology, epidemiology and equitable vaccine distribution should be considered when deciding the timing and eligibility for COVID-19 vaccine boosters

    Field Research Is Essential to Counter Virological Threats

    Get PDF
    The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.</p

    A Dual Infection Pseudorabies Virus Conditional Reporter Approach to Identify Projections to Collateralized Neurons in Complex Neural Circuits

    Get PDF
    Replication and transneuronal transport of pseudorabies virus (PRV) are widely used to define the organization of neural circuits in rodent brain. Here we report a dual infection approach that highlights connections to neurons that collateralize within complex networks. The method combines Cre recombinase (Cre) expression from a PRV recombinant (PRV-267) and Cre-dependent reporter gene expression from a second infecting strain of PRV (PRV-263). PRV-267 expresses both Cre and a monomeric red fluorescent protein (mRFP) fused to viral capsid protein VP26 (VP26-mRFP) that accumulates in infected cell nuclei. PRV-263 carries a Brainbow cassette and expresses a red (dTomato) reporter that fills the cytoplasm. However, in the presence of Cre, the dTomato gene is recombined from the cassette, eliminating expression of the red reporter and liberating expression of either yellow (EYFP) or cyan (mCerulean) cytoplasmic reporters. We conducted proof-of-principle experiments using a well-characterized model in which separate injection of recombinant viruses into the left and right kidneys produces infection of neurons in the renal preautonomic network. Neurons dedicated to one kidney expressed the unique reporters characteristic of PRV-263 (cytoplasmic dTomato) or PRV-267 (nuclear VP26-mRFP). Dual infected neurons expressed VP26-mRFP and the cyan or yellow cytoplasmic reporters activated by Cre-mediated recombination of the Brainbow cassette. Differential expression of cyan or yellow reporters in neurons lacking VP26-mRFP provided a unique marker of neurons synaptically connected to dual infected neurons, a synaptic relationship that cannot be distinguished using other dual infection tracing approaches. These data demonstrate Cre-enabled conditional reporter expression in polysynaptic circuits that permits the identification of collateralized neurons and their presynaptic partners
    • …
    corecore