14 research outputs found

    Integrable Quartic Potentials and Coupled KdV Equations

    Full text link
    We show a surprising connection between known integrable Hamiltonian systems with quartic potential and the stationary flows of some coupled KdV systems related to fourth order Lax operators. In particular, we present a connection between the Hirota-Satsuma coupled KdV system and (a generalisation of) the 1:6:11:6:1 integrable case quartic potential. A generalisation of the 1:6:81:6:8 case is similarly related to a different (but gauge related) fourth order Lax operator. We exploit this connection to derive a Lax representation for each of these integrable systems. In this context a canonical transformation is derived through a gauge transformation.Comment: LaTex, 11 page

    On the calculation of finite-gap solutions of the KdV equation

    Full text link
    A simple and general approach for calculating the elliptic finite-gap solutions of the Korteweg-de Vries (KdV) equation is proposed. Our approach is based on the use of the finite-gap equations and the general representation of these solutions in the form of rational functions of the elliptic Weierstrass function. The calculation of initial elliptic finite-gap solutions is reduced to the solution of the finite-band equations with respect to the parameters of the representation. The time evolution of these solutions is described via the dynamic equations of their poles, integrated with the help of the finite-gap equations. The proposed approach is applied by calculating the elliptic 1-, 2- and 3-gap solutions of the KdV equations

    Generalised Elliptic Functions

    Full text link
    We consider multiply periodic functions, sometimes called Abelian functions, defined with respect to the period matrices associated with classes of algebraic curves. We realise them as generalisations of the Weierstras P-function using two different approaches. These functions arise naturally as solutions to some of the important equations of mathematical physics and their differential equations, addition formulae, and applications have all been recent topics of study. The first approach discussed sees the functions defined as logarithmic derivatives of the sigma-function, a modified Riemann theta-function. We can make use of known properties of the sigma function to derive power series expansions and in turn the properties mentioned above. This approach has been extended to a wide range of non hyperelliptic and higher genus curves and an overview of recent results is given. The second approach defines the functions algebraically, after first modifying the curve into its equivariant form. This approach allows the use of representation theory to derive a range of results at lower computational cost. We discuss the development of this theory for hyperelliptic curves and how it may be extended in the future.Comment: 16 page

    Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in General Relativity

    Full text link
    The description of many dynamical problems like the particle motion in higher dimensional spherically and axially symmetric space-times is reduced to the inversion of a holomorphic hyperelliptic integral. The result of the inversion is defined only locally, and is done using the algebro-geometric techniques of the standard Jacobi inversion problem and the foregoing restriction to the θ\theta--divisor. For a representation of the hyperelliptic functions the Klein--Weierstra{\ss} multivariable sigma function is introduced. It is shown that all parameters needed for the calculations like period matrices and Abelian images of branch points can be expressed in terms of the periods of holomorphic differentials and theta-constants. The cases of genus two and three are considered in detail. The method is exemplified by particle motion associated with a genus three hyperelliptic curve

    A SL(2) covariant theory of genus 2 hyperelliptic functions

    No full text
    We present an algebraic formulation of genus 2 hyperelliptic functions which exploits the underlying covariance of the family of genus 2 curves. This allows a simple interpretation of all identities in representation theoretic terms. We show how the classical theory is recovered when one branch point is moved to infinity

    Integrable systems on a sphere as models for quantum dots

    No full text
    Model potentials for quantum dots with smooth boundaries, realistic in the whole range of energies, are introduced, starting from the integrable motion of a particle on a sphere under the action of an external quadratic field. We show that in the case of rotational invariant potentials, the associated 2D Schrödinger equation has exact zero-energy eigenfunctions, in terms of which the whole discrete spectrum can be characterized

    Identities for the classical genus two <i>p</i> function

    No full text
    We present a simple method that allows one to generate and classify identities for genus two Weierstrass p functions for generic algebraic curves of type (2, 6). We discuss the relation of these identities to the Boussinesq equation for shallow water waves and show, in particular, that these Weierstrass p functions give rise to a family of solutions to Boussinesq
    corecore