We consider multiply periodic functions, sometimes called Abelian functions,
defined with respect to the period matrices associated with classes of
algebraic curves. We realise them as generalisations of the Weierstras
P-function using two different approaches. These functions arise naturally as
solutions to some of the important equations of mathematical physics and their
differential equations, addition formulae, and applications have all been
recent topics of study.
The first approach discussed sees the functions defined as logarithmic
derivatives of the sigma-function, a modified Riemann theta-function. We can
make use of known properties of the sigma function to derive power series
expansions and in turn the properties mentioned above. This approach has been
extended to a wide range of non hyperelliptic and higher genus curves and an
overview of recent results is given.
The second approach defines the functions algebraically, after first
modifying the curve into its equivariant form. This approach allows the use of
representation theory to derive a range of results at lower computational cost.
We discuss the development of this theory for hyperelliptic curves and how it
may be extended in the future.Comment: 16 page