222 research outputs found

    Low temperature and cost-effective growth of vertically aligned carbon nanofibers using spin-coated polymer-stabilized palladium nanocatalysts

    Get PDF
    We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy) ethyl methacrylate)/Pd (LauMA(x)-b-AEMA(y)/Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer-Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 degrees C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 degrees C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions

    Self-Cleaning Micro-Windows for In-Tailpipe Optical Exhaust Gas Measurements

    Get PDF
    Exhaust gas measurement in the harsh environment of the tailpipe of a combustion engine by optical techniques is a highly robust technique, provided that optical access is maintained in the presence of particulate matter (PM). The considerations are presented for the systematic design of membranes with integrated heaters in SiC-on-Si technology for generating a well-defined lateral temperature profile with peak temperatures above 600 \ub0C. Periodically raising the temperature of the membranes to such a level is demonstrated to keep the surface transparent by oxidation of soot deposits. This paper is about continuous heating of the membrane to a temperature slightly higher than that of the exhaust gas. At such temperatures thermophoretic repulsion of PM allows allows long-term optical measurement in the exhaust without the thermo-mechanical loading by repetitive thermal cycling

    Maintaining transparency of a heated MEMs membrane for enabling long-term optical measurements on soot-containing exhaust gas

    Get PDF
    Ensuring optical transparency over a wide spectral range of a window with a view into the tailpipe of the combustion engine, while it is exposed to the harsh environment of sootcontaining exhaust gas, is an essential pre-requisite for introducing optical techniques for long-term monitoring of automotive emissions. Therefore, a regenerable window composed of an optically transparent polysilicon-carbide membrane with a diameter ranging from 100 \ub5m up to 2000 \ub5m has been fabricated in microelectromechanical systems (MEMS) technology. In the first operating mode, window transparency is periodically restored by pulsed heating of the membrane using an integrated resistor for heating to temperatures that result in oxidation of deposited soot (600–700 \ub0C). In the second mode, the membrane is kept transparent by repelling soot particles using thermophoresis. The same integrated resistor is used to yield a temperature gradient by continuous moderate-temperature heating. Realized devices have been subjected to laboratory soot exposure experiments. Membrane temperatures exceeding 500 \ub0C have been achieved without damage to the membrane. Moreover, heating of membranes to ΔT = 40 \ub0C above gas temperature provides sufficient thermophoretic repulsion to prevent particle deposition and maintain transparency at high soot exposure, while non-heated identical membranes on the same die and at the same exposure are heavily contaminated

    Impact of electrode geometry and thickness on planar on-chip microsupercapacitors

    Get PDF
    We report an assessment of the influence of both finger geometry and vertically-oriented carbon nanofiber lengths in planar micro-supercapacitors. Increasing the finger number leads to an up-scaling in areal power densities, which increases with scan rate. Growing the nanofibers longer, however, does not lead to a proportional growth in capacitance, proposedly related to limited ion penetration of the electrode

    The Expression of BAFF, APRIL and TWEAK Is Altered in Eczema Skin but Not in the Circulation of Atopic and Seborrheic Eczema Patients

    Get PDF
    The TNF family cytokines BAFF (B-cell activating factor of the TNF family) and APRIL (a proliferation-inducing ligand) are crucial survival factors for B-cell development and activation. B-cell directed treatments have been shown to improve atopic eczema (AE), suggesting the involvement of these cytokines in the pathogenesis of AE. We therefore analyzed the expression of these TNF cytokines in AE, seborrheic eczema (SE) and healthy controls (HC). The serum/plasma concentration of BAFF, APRIL and a close TNF member TWEAK (TNF-like weak inducer of apoptosis) was measured by ELISA. The expression of these cytokines and their receptors in skin was analyzed by quantitative RT-PCR and immunofluorescence. Unlike other inflammatory diseases including autoimmune diseases and asthma, the circulating levels of BAFF, APRIL and TWEAK were not elevated in AE or SE patients compared with HCs and did not correlate with the disease severity or systemic IgE levels in AE patients. Interestingly, we found that the expression of these cytokines and their receptors was altered in positive atopy patch test reactions in AE patients (APT-AE) and in lesional skin of AE and SE patients. The expression of APRIL was decreased and the expression of BAFF was increased in eczema skin of AE and SE, which could contribute to a reduced negative regulatory input on B-cells. This was found to be more pronounced in APT-AE, the initiating acute stage of AE, which may result in dysregulation of over-activated B-cells. Furthermore, the expression levels of TWEAK and its receptor positively correlated to each other in SE lesions, but inversely correlated in AE lesions. These results shed light on potential pathogenic roles of these TNF factors in AE and SE, and pinpoint a potential of tailored treatments towards these factors in AE and SE

    The Extended Cleavage Specificity of Human Thrombin

    Get PDF
    Thrombin is one of the most extensively studied of all proteases. Its central role in the coagulation cascade as well as several other areas has been thoroughly documented. Despite this, its consensus cleavage site has never been determined in detail. Here we have determined its extended substrate recognition profile using phage-display technology. The consensus recognition sequence was identified as, P2-Pro, P1-Arg, P1′-Ser/Ala/Gly/Thr, P2′-not acidic and P3′-Arg. Our analysis also identifies an important role for a P3′-arginine in thrombin substrates lacking a P2-proline. In order to study kinetics of this cooperative or additive effect we developed a system for insertion of various pre-selected cleavable sequences in a linker region between two thioredoxin molecules. Using this system we show that mutations of P2-Pro and P3′-Arg lead to an approximate 20-fold and 14-fold reduction, respectively in the rate of cleavage. Mutating both Pro and Arg results in a drop in cleavage of 200–400 times, which highlights the importance of these two positions for maximal substrate cleavage. Interestingly, no natural substrates display the obtained consensus sequence but represent sequences that show only 1–30% of the optimal cleavage rate for thrombin. This clearly indicates that maximal cleavage, excluding the help of exosite interactions, is not always desired, which may instead cause problems with dysregulated coagulation. It is likely exosite cooperativity has a central role in determining the specificity and rate of cleavage of many of these in vivo substrates. Major effects on cleavage efficiency were also observed for residues as far away as 4 amino acids from the cleavage site. Insertion of an aspartic acid in position P4 resulted in a drop in cleavage by a factor of almost 20 times

    Складові компоненти мовної особистості в контексті міжкультурної комунікації

    Get PDF
    Стаття присвячена аналізу складових компонентів мовної особистості в контексті міжкультурної комунікації, їх взаємодії та функціонуванню з точки зору прагматичної спрямованості мовленнєвого впливу. Детально розглядаються три рівні структури мовної особистості (структурно-мовний, лінгвокогнітивний ті мотиваційний) із визначенням специфіки їхніх складових компонентів.Статья посвящена анализу составляющих компонентов языковой личности в контексте межкультурной коммуникаций, их взаимодействию и функционированию с точки зрения прагматической направленности речевого воздействия. Детально рассматриваются три уровня структуры языковой личности (структурно-языковой, лингвокогнитивный и мотивационный) с последующим определением специфики их составляющих компонентов.The article is dedicated to the linguistic personality constituent components' analysis in terms of cross-cultural communication, their interaction and functioning with the speech influence pragmatic orientation taken into consideration. The three levels of the linguistic personality (that is, structural linguistic, lingo cognitive and motivation ones) are under analysis with the following their constituent components specificity determinatio

    Caspase-2 Mediated Apoptotic and Necrotic Murine Macrophage Cell Death Induced by Rough Brucella abortus

    Get PDF
    Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and protective Brucella immunity is discussed
    corecore