203 research outputs found
Recommended from our members
Refining genetic boundaries for Agassiz’s desert tortoise (Gopherus agassizii) in the western Sonoran Desert: the influence of the Coachella Valley on gene flow among populations in southern California
Understanding the influence of geographic features on the evolutionary history and population structure of a species can assist wildlife managers in delimiting genetic units (GUs) for conservation and management. Landscape features including mountains, low elevation depressions, and even roads can influence connectivity and gene flow among Agassiz’s desert tortoise (Gopherus agassizii) populations. Substantial changes in the landscape of the American Southwest occurred during the last six million years (including the formation of the Gulf of California and the lower Colorado River), which shaped the distribution and genetic structuring of tortoise populations. The area northwest of the Gulf of California is occupied by the Salton Trough, including the Coachella Valley at its northern end. Much of this area is below sea level and unsuitable as tortoise habitat, thus forming a potential barrier for gene flow. We assessed genetic relationships among three tortoise populations separated by the Coachella Valley. Two adjacent populations were on the east side of the valley in the foothills of the Cottonwood and Orocopia mountains separated by Interstate 10. The third population, Mesa, was located about 87 km away in the foothills of the San Bernardino Mountains at the far northwestern tip of the valley. The Cottonwood and Orocopia localities showed genetic affiliation with the adjacent Colorado Desert GU immediately to the east, and the Mesa population exhibited affiliation with both the Southern Mojave and Colorado Desert GUs, despite having a greater geographic distance (0.5x–1.5x greater) to the Colorado Desert GU. The genetic affiliation with the Colorado Desert GU suggests that the boundary for that GU needs to be substantially extended to the west to include the desert tortoise populations around the Coachella Valley. Their inclusion in the Colorado Desert GU may benefit these often overlooked populations when recovery actions are considered
Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties
We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs
Product–process matrix and complementarity approach
The relationship between different types of innovation is analysed from three different approaches. On the one hand, the distinctive view assumes that the determinants of each type of innovation are different and therefore there is no relationship between them. On the other hand, the integrative view considers that the different types of innovation are complementary. Finally, the product–process matrix framework suggests that the relationship between product innovation and process innovation is substitutive. Using data from Spain belonging to the Technological Innovation Panel (PITEC) for the years 2008, 2009, 2010, 2011 and 2012, we tested which of the three approaches is predominant. To perform the hypothesis test, we used the so-called complementarity approach. We find that there is no unique relation. The nature of the relationship depends on the types of innovation that interact. Our most significant finding is that the relationship between product innovation and process innovation is complementary. This finding contradicts the proposal of the product–process matrix framework. Consequently, the joint implementation of both types of innovation generates a greater impact on the performance of a company than the sum of their separate implementation
HIV/SIV Infection Primes Monocytes and Dendritic Cells for Apoptosis
Subversion or exacerbation of antigen-presenting cells (APC) death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs) that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs). We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14+) from SIV+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection
- …